Take-home Final - Math 440/508, Fall 2014

Due Monday December 8 by 5:00 pm. Please leave your paper in the instructor's mailbox in Math 126 or slide it under her office door in Math 214. Electronic submissions are also accepted.

Instructions: Your work will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

1. Applying ideas of Carathéodory, Koebe gave a proof of the Riemann mapping theorem by constructing explicitly a sequence of functions that converges to the desired conformal map. The goal of this problem is to fill out the details of Koebe's proof.

A Koebe domain is, by definition, a simply connected domain $K_0 \subseteq \mathbb{D}$ that is not all of \mathbb{D} and which contains the origin. Starting with a Koebe domain, the strategy is to find an injective function f_0 such that $f_0(K_0) = K_1$ is a Koebe domain "larger" than K_0 . Then one iterates this process, finally obtaining functions $F_n = f_n \circ \cdots \circ f_0 : K_0 \to \mathbb{D}$ such that $F_n(K_0) = K_{n+1}$ and $\lim_{n\to\infty} F_n = F$ is a conformal map K_0 onto \mathbb{D} .

The *inner radius* of a region $K \subseteq \mathbb{D}$ that contains the origin is defined by

$$r_K = \sup\{\rho \ge 0 : B(0; \rho) \subseteq K\}.$$

Also, a holomorphic injection $f : K \to \mathbb{D}$ is said to be an *expansion* if f(0) = 0 and |f(z)| > |z| for all $z \in K \setminus \{0\}$.

(a) Prove that if f is an expansion, then $r_{f(K)} \ge r_K$ and |f'(0)| > 1. [*Hint:* Write f(z) = zg(z) and use the maximum principle to prove that |f'(0)| = |g(0) > 1.]

Suppose we begin with a Koebe domain K_0 and a sequence of expansions $\{f_n : n \ge 0\}$ so that for every $n \ge 0$, the domain $K_{n+1} = f_n(K_n)$ is also a Koebe domain. We then define holomorphic maps $F_n = f_n \circ \cdots \circ f_0$.

(b) Prove that for each n, the function F_n is an expansion. Moreover, show that

$$F'_n(0) = \prod_{k=0}^n f'_k(0),$$

and conclude that $\lim_{n\to\infty} |f'_n(0)| = 1$. [*Hint:* Prove that the sequence $\{|F'_n(0)|\}$ has a limit by showing that it is bounded above and monotone increasing. Use the Schwarz lemma.]

(c) Argue that without loss of generality one may choose the expansions $\{f_n\}$ such that $f'_n(0) > 0$. Using this, show that if the sequence is *osculating*, that is, if $r_{K_n} \to 1$ as $n \to \infty$, then F_n converges uniformly on compact subsets of K_0 to a conformal map $F: K_0 \to \mathbb{D}$. [*Hint:* If $r_{F(K_0)} \ge 1$ then F is surjective.]

To construct the desired osculating sequence we shall use the automorphisms $\psi_{\alpha}(z) = (\alpha - z)/(1 - \overline{\alpha}z)$.

- (d) Given a Koebe domain K, choose a point $\alpha \in \mathbb{D}$ on the boundary of K such that $|\alpha| = r_K$ and also choose $\beta \in \mathbb{D}$ such that $\beta^2 = \alpha$. Let S denote the square root map, so that S(0) = 0. Why is the function $S \circ \psi_{\alpha}$ well-defined and holomorphic on K? Prove that the function $f: K \to \mathbb{D}$ defined by $f(z) = \psi_{\beta} \circ S \circ \psi_{\alpha}$ is an expansion. Moreover, show that $|f'(0)| = (1 + r_K)/(2\sqrt{r_K})$. [Hint: Apply the Schwarz lemma to the inverse function, namely $\psi_{\alpha} \circ g \circ \psi_{\beta}$ where $g(z) = z^2$.]
- (e) Use part (d) to construct the desired sequence and complete the proof of the Riemann mapping theorem.