The Arzela-Ascoli Theorem

Let (Ω, d) be a complete metric space, and G denote an open subset of \mathbb{C}. The notation $\mathcal{C}(G, \Omega)$ represents the class of continuous functions from G to Ω. We endow $\mathcal{C}(G, \Omega)$ with the metric space topology of uniform convergence on compact sets. Recall that if $\left\{K_{R}\right\}$ is an increasing family of compact subsets of G that fill out G, then a metic that generates this topology is given by

$$
\rho(f, g)=\sum_{R=1}^{\infty} 2^{-R} \frac{\rho_{R}(f, g)}{1+\rho_{R}(f, g)} \quad \text { where } \quad \rho_{R}(f, g)=\sup \left\{|f(z)-g(z)|: z \in K_{R}\right\}
$$

We fix a sequence $\left\{K_{R}\right\}$ and its associated metric ρ, and use these without further reference in the sequel.
Theorem 0.1 (Arzela-Ascoli). A set $\mathcal{F} \subseteq \mathcal{C}(G, \Omega)$ is normal (i.e., $\overline{\mathcal{F}}$ is compact) if and only if the following two conditions are satisfied:
(a) for each $z \in G,\{f(z): f \in \mathcal{F}\}$ has compact closure in Ω;
(b) \mathcal{F} is equicontinuous at each point in G.

Proof. Suppose that \mathcal{F} is normal. For every fixed $z \in G$, the evaluation map $\varphi_{z}: f \mapsto f(z)$ is continuous from $\mathcal{C}(G, \Omega)$ to Ω (why?). Since the image of a compact set under a continuous map is compact, $\varphi_{z}(\overline{\mathcal{F}})$ is compact. In particular, $\{f(z): f \in \mathcal{F}\}$ is contained in $\varphi_{z}(\overline{\mathcal{F}})$, and hence has compact closure.
We now proceed to prove (b); i.e., for any $z_{0} \in G$ and any $\epsilon>0$, we aim to find $\delta>0$ such that for all $f \in \mathcal{F}$,

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon \quad \text { whenever } \quad\left|z-z_{0}\right|<\delta \tag{1}
\end{equation*}
$$

First fix a small closed disc $\overline{B\left(z_{0} ; r\right)} \subseteq G$. Since this closed disc is compact, it is contained in one of the compact sets K_{R} for some $R \geq 1$. Let us consider the collection of open balls $\left\{\mathbb{B}_{\rho}\left(g ; 2^{-R} \frac{\frac{\epsilon}{3}}{1+\frac{\epsilon}{3}}\right): g \in \mathcal{F}\right\}$, which forms an open cover of $\overline{\mathcal{F}}$. Here $\mathbb{B}_{\rho}(g ; \epsilon)=\{h \in \mathcal{C}(G, \Omega)$: $\rho(g, h)<\epsilon\}$. Since \mathcal{F} is relatively compact, we may extract a finite subcover. In other words, there exists finitely many functions $f_{1}, f_{2}, \cdots, f_{N} \in \mathcal{F}$ such that

$$
\begin{equation*}
\mathcal{F} \subseteq \bigcup_{k=1}^{N} B_{\rho}\left(f_{k} ; 2^{-R} \frac{\epsilon}{3+\epsilon}\right) \tag{2}
\end{equation*}
$$

Now choose $0<\delta \leq r$ depending on ϵ so that for all $1 \leq k \leq N$,

$$
\begin{equation*}
\left|f_{k}(z)-f_{k}\left(z_{0}\right)\right|<\frac{\epsilon}{3} \quad \text { whenever } \quad\left|z-z_{0}\right|<\delta \tag{3}
\end{equation*}
$$

We will show that (1) holds for this choice of δ and all $f \in \mathcal{F}$.

The inclusion (2) implies that for any $f \in \mathcal{F}$, there exists f_{k} for some $1 \leq k \leq N$ such that $\rho\left(f, f_{k}\right)<2^{-R} \frac{\epsilon}{3+\epsilon}=2^{-R} \frac{\epsilon / 3}{1+\epsilon / 3}$. Since $\rho\left(f, f_{k}\right) \geq 2^{-R} \frac{\rho_{R}\left(f, f_{k}\right)}{1+\rho_{R}\left(f, f_{k}\right)}$, we deduce that $\rho_{R}\left(f, f_{k}\right)<\frac{\epsilon}{3}$. Combining this with the choice of δ made in (3), we obtain that for any $f \in \mathcal{F}$,

$$
\begin{aligned}
\left|f(z)-f\left(z_{0}\right)\right| & \leq\left|f(z)-f_{k}(z)\right|+\left|f\left(z_{0}\right)-f_{k}\left(z_{0}\right)\right|+\left|f_{k}(z)-f_{k}\left(z_{0}\right)\right| \\
& \leq 2 \rho_{R}\left(f, f_{k}\right)+\frac{\epsilon}{3}<\frac{2 \epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

Thus \mathcal{F} is equicontinuous, as claimed. This concludes the proof of the "only if" part.
Conversely, suppose that conditions (a) and (b) hold. To prove that \mathcal{F} is normal, it suffices to show that every sequence in \mathcal{F} has a subsequence that converges in $\mathcal{C}(G, \Omega)$. This in turn follows if the subsequence is Cauchy, since $\mathcal{C}(G, \Omega)$ is complete. Given $\left\{f_{n}: n \geq 1\right\} \subseteq \mathcal{F}$, we first extract a subsequence as follows. Let $\left\{z_{j}: j \geq 1\right\}$ be an enumeration of $G \cap(\mathbb{Q}+i \mathbb{Q})$, i.e., the points in G with rational real and imaginary parts. By hypotheses (a) and the Cantor diagonalization process, we can find a subsequence $\left\{f_{n_{k}}\right\} \subseteq\left\{f_{n}\right\}$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}\left(z_{j}\right)$ exists for all $j \geq 1$. Set $\omega_{j}=\lim _{k \rightarrow \infty} f_{n_{k}}\left(z_{j}\right) \in \Omega$. We now proceed to show that $\left\{g_{k}=f_{n_{k}}\right\}$ is a Cauchy sequence.
Fix $\epsilon>0$. Choose $R \geq 1$ large enough so that $2^{-R}<\frac{\epsilon}{2}$. Since every function in \mathcal{F} is uniformly continuous on each K_{r}, it follows from hypothesis (b) that there exists $\delta>0$ such that

$$
\begin{equation*}
\left|f(z)-f\left(z^{\prime}\right)\right|<\frac{\epsilon}{8} \quad \text { for all } f \in \mathcal{F} \text { and } z, z^{\prime} \in K_{R+1} \text { with }\left|z-z^{\prime}\right|<\delta \tag{4}
\end{equation*}
$$

Cover the compact subset K_{R} by finitely many balls of radius $\delta / 2$, and pick a point $z_{j} \in$ $(\mathbb{Q}+i \mathbb{Q}) \cap G$ from each ball. Let $L \geq 1$ be chosen large enough so that for every chosen z_{j},

$$
\begin{equation*}
\left|g_{k}\left(z_{j}\right)-g_{\ell}\left(z_{j}\right)\right| \leq\left|g_{k}\left(z_{j}\right)-\omega_{j}\right|+\left|g_{\ell}\left(z_{j}\right)-\omega_{j}\right|<\frac{\epsilon}{8}+\frac{\epsilon}{8}=\frac{\epsilon}{4} \quad \text { for all } k, \ell \geq L . \tag{5}
\end{equation*}
$$

For such k and ℓ, it follows from (4) and (5) that for all $z \in K_{R}$,

$$
\begin{aligned}
\left|g_{k}(z)-g_{\ell}(z)\right| & \leq\left|g_{k}(z)-g_{k}\left(z_{j}\right)\right|+\left|g_{\ell}(z)-g_{\ell}\left(z_{j}\right)\right|+\left|g_{k}\left(z_{j}\right)-g_{\ell}\left(z_{j}\right)\right| \\
& \leq \frac{\epsilon}{8}+\frac{\epsilon}{8}+\frac{\epsilon}{4}=\frac{\epsilon}{2}
\end{aligned}
$$

where z_{j} is chosen to lie in the same $\delta / 2$-ball as z. The last inequality implies that $\rho_{r}\left(g_{k}, g_{\ell}\right) \leq$ $\rho_{R}\left(g_{k}, g_{\ell}\right)<\frac{\epsilon}{2}$ for $1 \leq r \leq R$, hence

$$
\rho\left(g_{k}, g_{\ell}\right)=\left[\sum_{r=1}^{R}+\sum_{r=R+1}^{\infty}\right] 2^{-r} \frac{\rho_{r}\left(g_{k}, g_{\ell}\right)}{1+\rho_{r}\left(g_{k} g_{\ell}\right)}<\rho_{R}\left(g_{k}, g_{\ell}\right)+\frac{\epsilon}{2}<\epsilon
$$

for all $k, l \geq L$. This proves the desired claim.

