The Arzela-Ascoli Theorem

Let (€2,d) be a complete metric space, and G denote an open subset of C. The notation
C(G, Q) represents the class of continuous functions from G to 2. We endow C(G, ) with
the metric space topology of uniform convergence on compact sets. Recall that if {Kg} is
an increasing family of compact subsets of G that fill out GG, then a metic that generates this
topology is given by

= _R—pR<f’g) ere = su z2)—g(2)]: =
p(f,g)—;2 Tt pa gy e pallg) =sup{lf(:) —g(:)]: = € Kn}.

We fix a sequence { Kr} and its associated metric p, and use these without further reference
in the sequel.

Theorem 0.1 (Arzela-Ascoli). A set F C C(G,Q) is normal (i.e., F is compact) if and
only if the following two conditions are satisfied:

(a) for each z € G, {f(2) : f € F} has compact closure in );
(b) F is equicontinuous at each point in G.

Proof. Suppose that F is normal. For every fixed z € G, the evaluation map ¢, : f +— f(z) is
continuous from C(G, Q) to Q (why?). Since the image of a compact set under a continuous

map is compact, ¢, (F) is compact. In particular, {f(z) : f € F} is contained in ¢,(F), and
hence has compact closure.

We now proceed to prove (b); i.e., for any 2y € G and any € > 0, we aim to find § > 0 such
that for all f € F,

(1) |f(z) = f(z0)| <€ whenever |z — z| <.

First fix a small closed disc B(zg;7) € G. Since this closed disc is compact, it is contained
in one of the compact sets Kr for some R > 1. Let us consider the collection of open balls

{B,(y; 2*RIE§) : g € F}, which forms an open cover of F. Here B,(g;¢) = {h € C(G,Q) :

p(g,h) < €}. Since F is relatively compact, we may extract a finite subcover. In other words,
there exists finitely many functions fi, fo,- -, fx € F such that

€
3+¢€

(2) FClUB(fri2"5—).

Now choose 0 < § < r depending on € so that for all 1 < k < N,
(3) Lm@—ﬁ@m<§ whenever |2 — zo| < 4.

We will show that (1) holds for this choice of ¢ and all f € F.
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The inclusion (2) implies that for any f € F, there exists fj for some 1 < k < N such that
o(f, fx) <27 R3ie =2 Rli/jg Since p(f, fx) > 2_R%, we deduce that pr(f, fr) < §
Combining this with the choice of § made in (3), we obtain that for any f € F,

£ (2) = f(20)l < 1f(2) = fu(2)[ + £ (20) = fulz0) + [fa(2) = fr(20)]

€ 2 €
<2 — < —+4-=c¢.

Thus F is equicontinuous, as claimed. This concludes the proof of the “only if” part.

Conversely, suppose that conditions (a) and (b) hold. To prove that F is normal, it suffices
to show that every sequence in F has a subsequence that converges in C(G, §2). This in turn
follows if the subsequence is Cauchy, since C(G, 2) is complete. Given {f, :n > 1} C F, we
first extract a subsequence as follows. Let {2; : j > 1} be an enumeration of GN(Q+1:Q), i.e.,
the points in G with rational real and imaginary parts. By hypotheses (a) and the Cantor
diagonalization process, we can find a subsequence {f,, } € {f,} such that limj_, fn,(2;)
exists for all j > 1. Set w; = limy_,00 fr, (25) € 2. We now proceed to show that {gr = fn,}
is a Cauchy sequence.

Fix € > 0. Choose R > 1 large enough so that 27F < 5. Since every function in F is
uniformly continuous on each K, it follows from hypothesis (b) that there exists 6 > 0 such
that

(4) 1f(2) = f(&)| < g for all f € F and z,2’ € Kpyq with |z — 2| < 4.

Cover the compact subset K by finitely many balls of radius §/2, and pick a point z; €
(Q+1iQ) NG from each ball. Let L > 1 be chosen large enough so that for every chosen z;,

€ € €
(5)  ar(z5) = ge(2)] < |g(zj) — wj| + |ge(z;) — wy| < 3 + 371 for all k,¢ > L.

For such k and ¢, it follows from (4) and (5) that for all z € Kg,
|96(2) = ge(2)] < ng( ) = gk (2)] + 19e(2) — ge(z5)| + |9r(25) — ge(z5)]
€ € €
<§tsTiTy
where z; is chosen to lie in the same ¢/2-ball as z. The last inequality implies that p,(gk, g¢) <
pr(gr, ge) < 5 for 1 <r < R, hence

T 9 €
[ 3 | g <

r=1 r=R+1 1 +pr(gkg€)
for all k,1 > L. This proves the desired claim. [l
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