Homework 3 - Math 541, Fall 2012

Due Wednesday November 7 at the beginning of lecture.

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

1. Determine whether the following statements are true or false. Give brief justification for your answer.
(a) There exists $f \in L^{1}(\mathbb{T})$ such that $S_{N} f$ does not tend to f in L^{1} norm as $N \rightarrow \infty$.
(b) The Fourier transform is bounded from $L^{p}\left(\mathbb{R}^{d}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$ for every $1 \leq p \leq 2$.
(c) The Fourier transform is bounded from $L^{p}\left(\mathbb{R}^{d}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$ for some $p>2$.
2. Recall that the total variation $V(f, I)$ of a function f over an interval $I=(a, b) \subseteq \mathbb{R}$ is

$$
V(f, I)=\sup _{P} \sum_{j=1}^{k}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right|,
$$

where the supremum is taken over all partitions $P=\left\{\left(t_{0}, t_{1}, \cdots, t_{k}\right): a<t_{0}<t_{1}<\cdots<\right.$ $\left.t_{k}<b\right\}$. We denote $V(f)=V(f, \mathbb{R})$ if f is globally defined, and say that f is of bounded variation, denoted $f \in B V(\mathbb{R})$, if $V(f)<\infty$.
If $f \in B V(\mathbb{R})$ and has compact support, or if $f \in B V(\mathbb{T})$, show that

$$
|\widehat{f}(\xi)| \leq 2 \pi V(f)|\xi|^{-1} \quad \text { for all } \xi \neq 0
$$

Convince yourself that the proofs should be essentially identical for the two cases, and present just one.
3. The aim of this problem is to show that if $f \in C(\mathbb{T})$ has bounded variation, then $S_{N} f \rightarrow f$ uniformly as $N \rightarrow \infty$. Fill in these steps to arrive at this conclusion.
(a) Let $g \in L^{1}(\mathbb{T})$. Suppose that the Fourier coefficients of g satisfy the property that for every $\epsilon>0$ there is $\lambda=\lambda(\epsilon)>1$ such that

$$
\limsup _{n \rightarrow \infty} \sum_{n \leq|k| \leq \lambda n}|\widehat{g}(k)|<\epsilon .
$$

Show that $S_{n}(g)(t)$ converges if and only if $\sigma_{n}(g)(t)$ does.
(b) Use Problem 2 and the result in part (a) to prove the desired convergence of $S_{N} f$ if $f \in C(\mathbb{T}) \cap B V(\mathbb{T})$.
4. We proved in class that there exists $f \in C(\mathbb{T})$ whose Fourier series fails to converge uniformly, in fact, diverges to infinity at a point. Use the strategy outlined below (due to Salem) to prove a result of Pál and Bohr, which provides an interesting counterpoint: for any real-valued $f \in C(\mathbb{T})$, there exists a homeomorphism, in fact a continuous strictly increasing function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ with $\varphi(0)=0, \varphi(2 \pi)=2 \pi$, such that $S_{N}(f \circ \varphi) \rightarrow f \circ \varphi$ uniformly on \mathbb{T}.
(a) Argue that without loss of generality f can be chosen to have mean value zero and to vanish at the endpoints 0 and 2π. Deduce from this that there exists $0<a<2 \pi$ such that $f(a)=0$.
(b) Suppose first that the point a defined in part (a) is unique. Prove the Pál-Bohr theorem under this restricted assumption. (Hint: You may use without proof the following version of the Riemann mapping theorem: Let Ω be a domain in the plane bounded by a simple closed curve γ. Then there exists a conformal mapping (i.e. a holomorphic bijection) of the unit disc $\mathbb{D}=\{|z|<1\}$ onto Ω. The power series representing any such mapping converges uniformly on $\partial \mathbb{D}$ and determines a continuous bijection of $\partial \mathbb{D}$ onto γ.)
(c) Suppose now that a is not the only point on $(0,2 \pi)$ where f vanishes. Let $t_{1} \in I_{1}=$ $(0, a)$ and $t_{2} \in I_{2}=(a, 2 \pi)$ be two points such that $\left|f\left(t_{i}\right)\right|=\max \left\{|f(t)|: t \in I_{i}\right\}$. Consider the function $\omega(t)$ defined as follows,

$$
\omega(t)=\left\{\begin{array}{cc}
\max _{0 \leq s \leq t}|f(s)|+\sin \left(\frac{\pi t}{a}\right) & \text { if } 0 \leq t \leq t_{1} \\
\max _{t \leq s \leq a}|f(s)|+\sin \left(\frac{\pi t}{a}\right) & \text { if } t_{1} \leq t \leq a \\
-\max _{a \leq s \leq t}|f(s)|-\sin \left(\frac{\pi(t-a)}{2 \pi-a}\right) & \text { if } a \leq t \leq t_{2} \\
-\max _{t \leq s \leq 2 \pi}|f(s)|-\sin \left(\frac{\pi(t-a)}{2 \pi-a}\right) & \text { if } t_{2} \leq t \leq 2 \pi .
\end{array}\right\}
$$

Show that ω is of bounded variation and that $f+\omega$ satisfies the hypothesis of part (b).
(d) Use part (c) and problem 3 to complete the proof of the theorem.

