Midterm - Math 440/508, Fall 2011

Due on Monday October 24

1. Compute the following integrals :

$$
\text { (a) } \int_{-\infty}^{\infty} \frac{\sin x}{x(x-\pi)} d x \quad(b) \frac{1}{2 \pi i} \int_{C} \frac{d z}{\sin (1 / z)}
$$

where C is the circle $|z|=1 / 5$ positively oriented.

$$
(15 \times 2=30 \text { points })
$$

2. Determine the automorphism group $\operatorname{Aut}(\mathbb{C})$ of the complex plane; i.e., the set of all one-to-one analytic maps of \mathbb{C} onto \mathbb{C}. (Hint: examine the behavior at ∞.)
(20 points)
3. Let f be analytic on $\mathbb{C} \backslash\{0\}$, and suppose that

$$
f(\{|z|=1\}) \subseteq \mathbb{R} \quad \text { and } \quad f(z)=f(1 / z) \text { for all } z \neq 0
$$

Prove that f is real on $\mathbb{R} \backslash\{0\}$.
4. State whether each of the following statements is true or false. Give a short proof or a counterexample, as appropriate, in support of your claim.

$$
(10 \times 3=30 \text { points })
$$

(a) Let Ω be an open subset of \mathbb{R}^{2} and let $f: \Omega \rightarrow \mathbb{R}^{2}$ be a smooth map. Assume that f preserves orientation (i.e., the Jacobian of f is positive everywhere), and that f maps any pair of orthogonal curves to a pair of orthogonal curves. Then f must be holomorphic, after the usual identification of \mathbb{R}^{2} with \mathbb{C}.
(b) There exists a non-polynomial entire function f such that the image of every unbounded sequence under f is some unbounded sequence.
(c) The only function that is analytic on the unit disc and satisfies

$$
f^{\prime \prime}\left(\frac{1}{p}\right)+f\left(\frac{1}{p}\right)=0 \text { for all prime integers } p
$$

is the constant zero function.

