Problem Set 4 - Math 440/508, Fall 2011

The fourth homework assignment, due on Friday November 25, consists of the problems marked with asterisks.

- 1. (*) Stein and Shakarchi, page 69, Chapter 2, problem 5.
- 2. Prove Vitali's theorem: Suppose G is a region and $\{f_n\} \subseteq \mathbb{H}(G)$ is locally bounded. If $f \in \mathbb{H}(G)$ has the property that

$$A = \left\{ z \in G : \lim_{n \to \infty} f_n(z) = f(z) \right\}$$

has a limit point in G, then $f_n \to f$.

- 3. (*) This problem concerns two families of functions.
 - (a) Is the family of functions $\mathcal{F} = \{f_n : n \geq 1\}$ given by $f_n(z) = \tan nz$ normal on $G = \{z : \operatorname{Im}(z) > 0\}$? If not, produce a sequence that does not have a convergent subsequence. If yes, find $\overline{\mathcal{F}}$.
 - (b) Let G be a region. For any M > 0, let \mathcal{G}_M be the family of all functions in $\mathbb{H}(G)$ such that

$$\iint_G |f(x+iy)|^2 \, dx \, dy \le M.$$

Is \mathcal{G}_M normal?

4. In class, we discussed $\mathbb{H}(G)$ as a subset of $C(G, \mathbb{C})$. We would like to carry out a similar analysis for the set of all meromorphic functions $\mathbb{M}(G)$ on G, considering it as a subset of $C(G, \mathbb{C}_{\infty})$. Recall that via the stereographic projection, \mathbb{C}_{∞} is endowed with the chordal metric d: for $z, z' \in \mathbb{C}$,

$$d(z,z') = \frac{2|z-z'|}{\left[(1+|z|^2)(1+|z'|^2)\right]^{\frac{1}{2}}}, \qquad d(z,\infty) = \frac{2}{(1+|z|^2)^{\frac{1}{2}}}.$$

Use d to impose a metric ρ on $C(G, \mathbb{C}_{\infty})$, exactly as before; namely,

$$\rho(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(f,g)}{1 + \rho_n(f,g)}, \quad \rho_n(f,g) = \sup \left\{ d(f(z),g(z)) : z \in K_n \right\},$$

where $K_n \subseteq G$ is an increasing sequence of compact sets that exhaust G, and satisfy $K_n \subseteq int(K_{n+1})$.

Verify the following statements:

- (a) Let f_n be a sequence in $\mathbb{M}(G)$ and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic or $f \equiv \infty$.
- (b) $\mathbb{M}(G) \cup \{\infty\}$ is a complete metric space.
- (c) $\mathbb{H}(G) \cup \infty$ is closed in $C(G, \mathbb{C}_{\infty})$.
- 5. (*) If f is a meromorphic function of the region G then define $f^{\#}: G \to \mathbb{R}$ by

$$f^{\#}(z) = \begin{cases} \frac{2|f'(z)|}{1+|f(z)|^2} & \text{if } z \text{ is not a pole of } f, \\ \lim_{w \to z} \frac{2|f'(w)|}{1+|f(w)|^2} & \text{if } z \text{ is a pole of } f. \end{cases}$$

Prove the following theorem due to Marty:

A family $\mathcal{F} \subseteq \mathbb{M}(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if the family $\mathcal{F}^{\#} = \{f^{\#} : f \in \mathcal{F}\}$ is locally bounded.

- 6. (*) Let A(0; r, R) denote the annulus centered at the origin, with inner radius r and outer radius R, r < R. Find a necessary and sufficient condition for two annuli $A(0; r_1, R_1)$ and $A(0; r_2, R_2)$ to be conformally equivalent.
- 7. Let (X_n, d_n) be a metric space for each $n \ge 1$ and let $X = \prod_{n=1}^{\infty} X_n$. For $\xi, \eta \in X$ with $\xi = (x_n), \eta = (y_n), x_n, y_n \in X_n$, define

$$d^*(\xi,\eta) := \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$

- (a) Show that (X, d^*) is a metric space.
- (b) Describe the convergent sequences in this metric space.
- (c) Show that if (X_n, d_n) is compact for every n, then (X, d^*) is a metric space. (Hint: Use Cantor diagonalization.)
- 8. Let G be a domain in \mathbb{C} , and (Ω, d) a complete metric space. In our discussion of normal subfamilies of $C(G, \Omega)$, we mentioned the Arzela-Ascoli theorem, which goes as follows:

Arzela-Ascoli Theorem. A set $\mathcal{F} \subseteq C(G, \Omega)$ is normal if and only if both the following conditions hold:

- (i) For each $z \in G$, $\{f(z) : f \in \mathcal{F}\}$ has compact closure in Ω ;
- (ii) \mathcal{F} is equicontinuous at each point in G.

The purpose of this problem is to sketch a proof of this theorem. Fill in the details of the steps outlined below.

(a) Assume that \mathcal{F} is normal. Show that for each $z \in G$, the map from $C(G, \Omega)$ to Ω given by

 $f \mapsto f(z)$

is continuous. Use this to deduce part(i) of the theorem.

(b) Show that if \mathcal{F} is normal, then for every compact set $K \subset G$ and $\epsilon > 0$ there are functions f_1, \dots, f_n in \mathcal{F} such that for every $f \in \mathcal{F}$ there is some $k \in \{1, \dots, n\}$ with

$$\sup \left\{ d(f(z), f_k(z)) : z \in K \right\} < \epsilon.$$

Use this to show that \mathcal{F} is equicontinuous on G.

(c) Conversely, suppose that \mathcal{F} satisfies conditions (i) and (ii). Let $\{z_n : n \ge 1\}$ be an enumeration of all points in G with rational real and imaginary parts. If $\{f_k : k \ge 1\}$ is a sequence of functions in \mathcal{F} , use problem 7 to deduce the existence of a subsequence $\{f_{k_j} : j \ge 1\} \subseteq \{f_k : k \ge 1\}$ such that for every $n \ge 1$,

$$\lim_{j \to \infty} f_{k_j}(z_n) = \omega_n \quad \text{ for some } \omega_n \in \Omega.$$

(d) Use the conclusion in part (c) to show that the subsequence $\{f_{k_j}\}$ is Cauchy in $(C(G, \Omega), \rho)$, and hence converges. This concludes the proof that \mathcal{F} is normal.