The third homework assignment, due on Monday November 14, consists of the problems marked with asterisks.

- Stein and Shakarchi, page 105, Chapter 3, Section 8, Exercises 13, 14, 15, 16, 17.
- 2. (*) Stein and Shakarchi, page 108, Chapter 3, Section 9, Problem 1.
- 3. Stein and Shakarchi, page 109, Chapter 3, Section 9, Problem 3.
- 4. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an analytic function in the open unit disk $\mathbb{D} = \{z : |z| < 1\}$. Assume that

$$\sum_{n=2}^{\infty} n|a_n| \le |a_1| \quad \text{with } a_1 \ne 0.$$

Prove that f is injective.

- 5. (*) A fractional linear transformation maps the annulus r < |z| < 1 (where r > 0) onto the domain bounded by the two circles |z 1/4| = 1/4 and |z| = 1. Find r.
- 6. Let f be a holomorphic function of the unit disk \mathbb{D} into itself, which is not the identity map. Show that f can have at most one fixed point.
- 7. (*) Consider the polynomial

$$p(z) = z^5 + z^3 + 5z^2 + 2.$$

How many zeros (counting multiplicities) does p have in the annular region 1 < |z| < 2?

8. (a) Let

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

be analytic in the unit disk. Assuming that f is injective, find the area of $f(\mathbb{D})$ in terms of the coefficients $\{c_n : n \ge 0\}$.

- (b) Compute the area of the image of the unit disk under the map $f(z) = z + \frac{z^2}{2}$.
- 9. Let the function f be analytic in the unit disk with $|f(z)| \leq 1$ and f(0) = 0. Assume that there is a number r in (0, 1) such that f(r) = f(-r) = 0. Prove that

$$|f(z)| \le |z| \left| \frac{z^2 - r^2}{1 - r^2 z^2} \right|.$$

10. (*) Suppose f is analytic in some open set containing $\overline{\mathbb{D}}$ and has the property

$$|f(z)| = 1$$
 where $|z| = 1$.

Find a formula for f in terms of its zeros in \mathbb{D} .

11. (a) For |z| < 1 define f(z) by

$$f(z) = \exp\left\{-i\log\left[i\left(\frac{1+z}{1-z}\right)\right]^{\frac{1}{2}}\right\}.$$

Describe $f(\mathbb{D})$.

- (b) Discuss the mapping properties of $(1-z)^i$.
- 12. If \mathcal{G} is a group and \mathcal{N} is a subgroup then \mathcal{N} is said to be a normal subgroup of \mathcal{G} if $S^{-1}TS \in \mathcal{N}$ whenever $T \in \mathcal{N}$ and $S \in \mathcal{G}$. A group \mathcal{G} is said to be simple if the only normal subgroups of \mathcal{G} are the trivial ones, namely the identity and \mathcal{G} itself. Prove that the group of Möbius transformations is a simple group.
- 13. (a) Prove that there is no one-to-one conformal map of the punctured disc $G = \{z \in \mathbb{C} : 0 < |z| < 1\}$ onto the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}.$
 - (b) More generally, find a necessary and sufficient condition for two annuli, both centered at the origin, to be conformally equivalent.
- 14. Let Γ be a circle through points z_2, z_3, z_4 . The points $z, z^* \in \mathbb{C}_{\infty}$ are said to be *symmetric* about Γ if

$$(z, z_2, z_3, z_4) = (z, z_2, z_3, z_4).$$

- (a) Give a geometric description of the relation between z and z^* . Does it agree with your notion of symmetry about a straight line?
- (b) Prove the symmetry principle: If a Möbius transformation T takes a circle Γ_1 to a circle Γ_2 , then any pair of points symmetric with respect to Γ are mapped by T onto a pair of points symmetric about Γ_2 .
- 15. If Γ is a circle then an *orientation* for Γ is an ordered triple of point (z_1, z_2, z_3) such that $z_j \in \Gamma$, j = 1, 2, 3. (Intuitively, these points give a direction to Γ , why?). Given such an orientation, we define the right and left side of Γ with respect to (z_1, z_2, z_3) to be the sets

$$\{z \in \mathbb{C} : \operatorname{Im}(z, z_1, z_2, z_3) > 0\}$$
 and $\{z \in \mathbb{C} : \operatorname{Im}(z, z_1, z_2, z_3) < 0\}$

respectively.

Prove the orientation principle: Let Γ_1 and Γ_2 be two circles in \mathbb{C}_{∞} and let T be a Möbius transformation such that $T(\Gamma_1) = \Gamma_2$. Let (z_1, z_2, z_3) be an orientation for Γ_1 . Then T takes the right and left sides of Γ_1 onto the right and left sides of Γ_2 with respect to the orientation (Tz_1, Tz_2, Tz_3) .