Final - Math 440/508, Fall 2011

Due on Tuesday December 6

1. Let n be a positive integer. Prove that the polynomial

$$
f(x)=\sum_{i=0}^{n} \frac{x^{i}}{i!}
$$

has n distinct complex zeroes z_{1}, \cdots, z_{n}, and they satisfy

$$
\sum_{i=1}^{n} z_{i}^{-j}=0 \quad \text { for } \quad 2 \leq j \leq n
$$

2. Let C denote the positively oriented circle $|z|=2$. Evaluate the integral

$$
\int_{C} \sqrt{z^{2}-1} d z
$$

where the branch of the square root is chosen so that $\sqrt{2^{2}-1}>0$.
3. Let Ω be the region whose boundaries are the rays $\operatorname{Arg}(z)= \pm \frac{\pi}{4}$ and the branch of the hyperbola $x^{2}-y^{2}=1$ lying in the half-plane $\operatorname{Re}(z)>0$. Find a conformal map of Ω onto the unit disk.

