9. f(x, y, z) = xyz, g(x, y, z) = x² + 2y² + 3z² = 6 ⇒ ∇f = ⟨yz, xz, xy⟩, λ∇g = ⟨2λx, 4λy, 6λz⟩. If λ = 0 then at least one of the coordinates is 0, in which case f(x, y, z) = 0. (None of these ends up giving a maximum or minimum.) If λ ≠ 0, then ∇f = λ∇g implies λ = (yz)/(2x) = (xz)/(4y) = (xy)/(6z) or x² = 2y² and z² = ²/₃y². Thus x² + 2y² + 3z² = 6 implies 6y² = 6 or y = ±1. Thus the possible remaining points are (√2, ±1, √²/₃), (√2, ±1, -√²/₃), (-√2, ±1, -√²/₃). The maximum value of f on the ellipsoid is ²/_{√3}, occurring when all coordinates are positive or exactly two are negative and the minimum is -²/_{√3} occurring when 1 or 3 of the coordinates are

negative.

- 18. $f(x, y) = 2x^2 + 3y^2 4x 5 \Rightarrow \nabla f = \langle 4x 4, 6y \rangle = \langle 0, 0 \rangle \Rightarrow x = 1, y = 0$. Thus (1, 0) is the only critical point of f, and it lies in the region $x^2 + y^2 < 16$. On the boundary, $g(x, y) = x^2 + y^2 = 16 \Rightarrow \lambda \nabla g = \langle 2\lambda x, 2\lambda y \rangle$, so $6y = 2\lambda y \Rightarrow$ either y = 0 or $\lambda = 3$. If y = 0, then $x = \pm 4$; if $\lambda = 3$, then $4x 4 = 2\lambda x \Rightarrow x = -2$ and $y = \pm 2\sqrt{3}$. Now f(1, 0) = -7, f(4, 0) = 11, f(-4, 0) = 43, and $f(-2, \pm 2\sqrt{3}) = 47$. Thus the maximum value of f(x, y) on the disk $x^2 + y^2 \le 16$ is $f(-2, \pm 2\sqrt{3}) = 47$, and the minimum value is f(1, 0) = -7.
- 44. (a) By Theorem 15.6.15 [ET 14.6.15], the maximum value of the directional derivative occurs when u has the same direction as the gradient vector.
 - (b) It is a minimum when u is in the direction opposite to that of the gradient vector (that is, u is in the direction of $-\nabla f$), since $D_{\mathbf{u}} f = |\nabla f| \cos \theta$ (see the proof of Theorem 15.6.15 [ET 14.6.15]) has a minimum when $\theta = \pi$.
 - (c) The directional derivative is 0 when u is perpendicular to the gradient vector, since then $D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = 0$.
 - (d) The directional derivative is half of its maximum value when $D_{\mathbf{u}} f = |\nabla f| \cos \theta = \frac{1}{2} |\nabla f| \iff \cos \theta = \frac{1}{2} \Leftrightarrow \theta = \frac{\pi}{3}$.

32. Because *X* and *Y* are independent, the joint density function for Xavier's and Yolanda's arrival times is the product of the individual density functions:

$$f(x,y) = f_1(x)f_2(y) = \begin{cases} \frac{1}{50}e^{-x}y & \text{if } x \ge 0, 0 \le y \le 10\\ 0 & \text{otherwise} \end{cases}$$

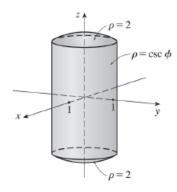
Since Xavier won't wait for Yolanda, they won't meet unless $X \ge Y$. Additionally, Yolanda will wait up to half an hour but no longer, so they won't meet unless $X - Y \le 30$. Thus the probability that they meet is $P((X, Y) \in D)$ where *D* is the parallelogram shown in the figure. The integral is simpler to evaluate if we consider *D* as a type II region, so

$$P((X,Y) \in D) = \iint_D f(x,y) \, dx \, dy = \int_0^{10} \int_y^{y+30} \frac{1}{50} e^{-x} y \, dx \, dy = \frac{1}{50} \int_0^{10} y \left[-e^{-x} \right]_{x=y}^{x=y+30} \, dy$$
$$= \frac{1}{50} \int_0^{10} y \left(-e^{-(y+30)} + e^{-y} \right) dy = \frac{1}{50} \left(1 - e^{-30} \right) \int_0^{10} y e^{-y} \, dy$$

By integration by parts (or Formula 96 in the Table of Integrals), this is

 $\frac{1}{50}(1-e^{-30})\left[-(y+1)e^{-y}\right]_{0}^{10} = \frac{1}{50}(1-e^{-30})(1-11e^{-10}) \approx 0.020.$ Thus there is only about a 2% chance they will meet. Such is student life!

14. ρ ≤ 2 represents the solid sphere of radius 2 centered at the origin. Notice that x² + y² = (ρ sin φ cos θ)² + (ρ sin φ sin θ)² = ρ² sin² φ. Then ρ = csc φ ⇒ ρ sin φ = 1 ⇒ ρ² sin² φ = x² + y² = 1, so ρ ≤ csc φ restricts the solid to that portion on or inside the circular cylinder x² + y² = 1.



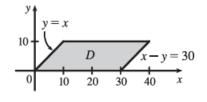
36. Place the center of the sphere at (0, 0, 0), let the diameter of intersection be along the *z*-axis, one of the planes be the *xz*-plane and the other be the plane whose angle with the *xz*-plane is $\theta = \frac{\pi}{6}$. Then in spherical coordinates the volume is given by

$$V = \int_0^{\pi/6} \int_0^{\pi} \int_0^a \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \int_0^{\pi/6} d\theta \, \int_0^{\pi} \sin \phi \, d\phi \, \int_0^a \rho^2 \, d\rho = \frac{\pi}{6} (2) \left(\frac{1}{3}a^3\right) = \frac{1}{9}\pi a^3.$$

44. The given integral is equal to $\lim_{R \to \infty} \int_0^{2\pi} \int_0^{\pi} \int_0^R \rho e^{-\rho^2} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \lim_{R \to \infty} \left(\int_0^{2\pi} d\theta \right) \left(\int_0^{\pi} \sin \phi \, d\phi \right) \left(\int_0^R \rho^3 e^{-\rho^2} \, d\rho \right).$ Now use integration by parts with $u = \rho^2$, $dv = \rho e^{-\rho^2} \, d\rho$ to get

$$\lim_{R \to \infty} 2\pi (2) \left(\rho^2 \left(-\frac{1}{2} \right) e^{-\rho^2} \right]_0^R - \int_0^R 2\rho \left(-\frac{1}{2} \right) e^{-\rho^2} d\rho \right) = \lim_{R \to \infty} 4\pi \left(-\frac{1}{2} R^2 e^{-R^2} + \left[-\frac{1}{2} e^{-\rho^2} \right]_0^R \right)$$
$$= 4\pi \lim_{R \to \infty} \left[-\frac{1}{2} R^2 e^{-R^2} - \frac{1}{2} e^{-R^2} + \frac{1}{2} \right] = 4\pi \left(\frac{1}{2} \right) = 2\pi$$

(Note that $R^2 e^{-R^2} \to 0$ as $R \to \infty$ by l'Hospital's Rule.)



Practice Problem Set 2 Solutions

