Practice Problem Set 1 for Midterm 2

1. Find the volume above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$.
(Answer: $\frac{\pi}{6}$)
2. Use the transformation $x=u^{2}, y=v^{2}, z=w^{2}$ to find the volume of the region bounded by the surface

$$
\sqrt{x}+\sqrt{y}+\sqrt{z}=1
$$

and the coordinate hyperplanes.
(Answer: $\frac{1}{90}$)
3. Use spherical coordinates to evaluate

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

(Answer: $\frac{64}{9} \pi$)
4. A lamp has three bulbs, each of a type with average lifetime 800 hours. If we model the probability of failure of bulbs by an exponential density function with mean 800 , find the probability that all three bulbs fail within a total of 1000 hours.
(Answer: $1-\frac{97}{32} e^{-\frac{5}{4}}$)
5. Describe the solid whose volume is given by the integral

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{1}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

and use this information (without any integration) to evaluate the integral.
(Answer: $\frac{7}{6} \pi$)

