Practice Problem Set

1. The ellipsoid $4 x^{2}+2 y^{2}+z^{2}=16$ intersects the plane $y=2$ in an ellipse. Find parametric equations for the tangent line to this ellipse at (1,2,2).
(Solution: $x=1+t, y=2, z=2-2 t$)
2. Car A is travelling north on Highway 16 and car B is travelling west on Highway 83. Each car is approaching the intersection of these highways. at a certain moment, car A is 0.3 km from the intersection and travelling at $90 \mathrm{~km} / \mathrm{h}$ while car B is 0.4 km from the intersection and travelling $80 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the cars changing at that moment?
(Solution: - $118 \mathrm{~km} / \mathrm{h}$)
3. Find the normal direction to the surface given by the equation $x-$ $z=\arctan (y z)$.
(Solution: $\left\langle 1+y^{2} z^{2}, z,-\left(1+y+y^{2} z^{2}\right)\right\rangle$)
4. Can there exist a function $f(x, y)$ for which $f_{x}(x, y)=y+x^{2} y$ and $f_{y}(x, y)=x+x y^{2}$?
(Solution: no, by Clairauts' theorem)
5. If $f(x, y)=x\left(x^{2}+y^{2}\right)^{-\frac{3}{2}} e^{\sin \left(x^{2} y\right)}$, find $f_{x}(1,0)$.
(Solution: -2.)
6. Find the equation of the tangent plane and the normal line to the surface $x y+y z+z x=3$ at $(1,1,1)$.
(Solution: $x+y+z=3, x=y=z$)
