Review Sheet 2

1. An ellipsoid is created by rotating the ellipse $4 x^{2}+y^{2}=16$ about the x-axis. Find an equation for the ellipsoid.
2. Find the unit tangent, normal and binormal vectors of the curve

$$
\mathbf{r}(t)=\langle\cos t, \sin t, \ln \cos t\rangle
$$

at the point $(1,0,0)$.
3. Find equations of the normal plane and osculating plane of the curve

$$
x=t, \quad y=t^{2}, \quad z=t^{3} \quad \text { at }(1,1,1) .
$$

4. Find the best linear approximation of the function $f(x, y)=\sqrt{y+\cos ^{2} x}$ at $(0,0)$.
5. If x, y, z satisfy the relation

$$
x y z=\cos (x+y+z)
$$

find $\partial z / \partial x$ and $\partial z / \partial y$.
6. Find the dimensions of a rectangular box of largest volume such that the sum of the lengths of its twelve edges is a constant c.
7. Evaluate the integral

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

8. Give five other iterated integrals that are equal to

$$
\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) d z d x d y
$$

9. Show that there is no vector field \mathbf{G} such that

$$
\operatorname{curl} \mathbf{G}=2 x \mathbf{i}+3 y z \mathbf{j}-x z^{2} \mathbf{k}
$$

10. Evaluate the surface integral

$$
\iint_{S}\left(x^{2} z+y^{2} z\right) d S
$$

where S is part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
11. Use Stokes' theorem to evaluate \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=$ $x^{2} y z \mathbf{i}+y z^{2} \mathbf{j}+z^{3} e^{x y} \mathbf{k}, S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$ and S is oriented upward.
12. Use the divergence theorem to calculate the surface integral $\iint_{S} \mathbf{F}$. $d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$.

