Review Sheet 1

1. For what values of the number r is the function

$$
f(x, y, z)= \begin{cases}\frac{(x+y+z)^{r}}{x^{2}+y^{2}+z^{2}} & \text { if }(x, y, z) \neq(0,0,0) \\ 0 & \text { if }(x, y, z)=0\end{cases}
$$

continuous on \mathbb{R} ?
(Answer: $r>2$)
2. Among all planes that are tangent to the surface $x y^{2} z^{2}=1$, find the ones that are farthest from the origin.

$$
\text { (Answer: } \left.\left(2^{2 / 5}\right) x \pm\left(2^{9 / 10}\right) y \pm\left(2^{9 / 10}\right) z=5\right)
$$

3. Evaluate the integral

$$
\int_{0}^{1} \int_{0}^{1} e^{\max \left\{x^{2}, y^{2}\right\}} d y d x
$$

where $\max \left\{x^{2}, y^{2}\right\}$ means the larger of the two numbers x^{2} and y^{2}.
(Answer: $e-1$)
4. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, show that

$$
\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) d t d z d y=\frac{1}{2} \int_{0}^{x}(x-t)^{2} f(t) d t
$$

5. Recall that a function f is harmonic if $\nabla^{2} f=0$.
(a) Show that if f is a harmonic function in \mathbb{R}^{2} then the line integral

$$
\int f_{y} d y-f_{x} d x
$$

is independent of path.
(b) Show that for any harmonic function f in $\mathbb{R}^{2},\left\langle f_{x}, f_{y}\right\rangle$ and $\left\langle f_{y},-f_{x}\right\rangle$ form a pair of mutually orthogonal (i.e., perpendicular to each other) conservative vector fields.
6. (a) Sketch the curve C with parametric equations

$$
x=\cos t, \quad y=\sin t, \quad z=\sin t, \quad 0 \leq t \leq 2 \pi .
$$

(b) Find $\int_{C} 2 x e^{2 y} d x+\left(2 x^{2} e^{2 y}+2 y \cot z\right) d y-y^{2} \csc ^{2} z d z$.
(Answer: (a) an ellipse, (b) 0)
7. Let

$$
\mathbf{F}(x, y)=\frac{1}{x^{2}+y^{2}}\left[\left(2 x^{3}+2 x y^{2}-2 y\right) \mathbf{i}+\left(2 y^{3}+2 x^{2} y+2 x\right) \mathbf{j}\right] .
$$

Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is an arbitrary positively oriented simple closed curve containing the origin in its interior.
(Answer: 4π)
8. Find the positively oriented simple closed curve C for which the value of the line integral

$$
\int_{C}\left(y^{3}-y\right) d x-2 x^{3} d y
$$

is a maximum.
9. (a) As part of the lecture on div and curl, we reformulated Green's theorem as follows:

$$
\begin{equation*}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A \tag{1}
\end{equation*}
$$

where C and D satisfy the hypotheses of Green's theorem. This led to a discussion prompted by two questions of Craig and Evan, about the significance of \mathbf{k} in this formula, and possible generalizations of this result for curves C not necessarily lying in the (x, y) plane. We are now in a position to address this question in its entirety.
Let C be a simple closed curve lying on a (not necessarily horizontal) plane P, and enclosing a domain D. Let \mathbf{F} be a vector field in \mathbb{R}^{3} with continuous partial derivatives on D. Find an identity similar to (1) that relates the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ with an integral over the domain D. What has $\mathbf{k} d A$ been replaced by?
(b) Let C be a simple positively oriented closed curve lying in a plane with unit normal vector $\mathbf{n}=\langle a, b, c\rangle$. Show that the plane area enclosed by C is

$$
\frac{1}{2} \oint_{C}(b z-c y) d x+(c x-a z) d y+(a y-b x) d z
$$

