Math 217 Assignment 9

Due Friday November 27

- Problems to turn in:

1. Use Green's theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
\mathbf{F}(x, y)=y^{2} \cos x \mathbf{i}+\left(x^{2}+2 y \sin x\right) \mathbf{j}
$$

and C is the triangle from $(0,0)$ to $(2,6)$ to $(2,0)$ to $(0,0)$.
2. (a) Let D denote the bounded region in the plane enclosed by the simple closed curve C. Show that

$$
A(D)=\oint_{C} x d y
$$

Can you find another line integral over C which represents the same area?
(b) Show that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A(D)} \oint_{C} x^{2} d y, \quad \bar{y}=-\frac{1}{2 A(D)} \oint_{C} y^{2} d x
$$

where $A(D)$ denotes the area of the region D.
(c) Use the formula in part (a) above to find the area under one arch of the cycloid $x=t-\sin t, y=1-\cos t$.
3. (a) Is the vector field

$$
\mathbf{F}(x, y, z)=e^{z} \mathbf{i}+\mathbf{j}+x e^{z} \mathbf{k}
$$

conservative?
(b) Is there a vector field \mathbf{G} on \mathbb{R}^{3} such that

$$
\operatorname{curl}(\mathbf{G})=x y z \mathbf{i}-y^{2} z \mathbf{j}+y z^{2} \mathbf{k} ?
$$

Explain.
4. Is there a value of p for which $\operatorname{div}\left(\mathbf{r} /|\mathbf{r}|^{p}\right)=0$?
5. Let C and D be as in Problem 2, and let \mathbf{n} denote the unit normal vector to C.
(a) Starting with the statement of Green's theorem, establish the identity

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \operatorname{div} \mathbf{F}(x, y) d A .
$$

(b) Let f and g be functions with continuous partial derivatives in D. Setting $\nabla^{2}=\nabla \cdot \nabla$ and using the identity in part (a), prove Green's first identity

$$
\iint_{D} f \nabla^{2} g d A=\oint_{C} f(\nabla g) \cdot \mathbf{n} d s-\iint_{D} \nabla f \cdot \nabla g d A .
$$

6. Identify the surfaces
(a) $\mathbf{r}(u, v)=2 \sin u \mathbf{i}+3 \cos u \mathbf{j}+v \mathbf{k}, 0 \leq v \leq 2$,
(b) $\mathbf{r}(s, t)=\left\langle s, t, t^{2}-s^{2}\right\rangle$.
7. Find the area of the part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$ and $(2,1)$.
8. Find the area of the part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=9$.
