13. 



$$
\begin{aligned}
& \rho(x, y)=k \sqrt{x^{2}+y^{2}}=k r \\
& m=\iint_{D} \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2} k r \cdot r d r d \theta \\
& \quad=k \int_{0}^{\pi} d \theta \int_{1}^{2} r^{2} d r=k(\pi)\left[\frac{1}{3} r^{3}\right]_{1}^{2}=\frac{7}{3} \pi k
\end{aligned}
$$

$$
\left.\begin{array}{rl}
M_{y} & =\iint_{D} x \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2}(r \cos \theta)(k r) r d r d \theta=k \int_{0}^{\pi} \cos \theta d \theta \int_{1}^{2} r^{3} d r \\
& =k[\sin \theta]_{0}^{\pi}\left[\frac{1}{4} r^{4}\right]_{1}^{2}=k(0)\left(\frac{15}{4}\right)=0 \quad \text { [this is to be expected as the region and density } \\
\text { function are symmetric about the } y \text {-axis] }
\end{array}\right\} \begin{array}{ll}
M_{x} & =\iint_{D} y \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2}(r \sin \theta)(k r) r d r d \theta=k \int_{0}^{\pi} \sin \theta d \theta \int_{1}^{2} r^{3} d r \\
& =k[-\cos \theta]_{0}^{\pi}\left[\frac{1}{4} r^{4}\right]_{1}^{2}=k(1+1)\left(\frac{15}{4}\right)=\frac{15}{2} k .
\end{array}
$$

Hence $(\bar{x}, \bar{y})=\left(0, \frac{15 k / 2}{7 \pi k / 3}\right)=\left(0, \frac{45}{14 \pi}\right)$.
33. (a) If $f(P, A)$ is the probability that an individual at $A$ will be infected by an individual at $P$, and $k d A$ is the number of infected individuals in an element of area $d A$, then $f(P, A) k d A$ is the number of infections that should result from exposure of the individual at $A$ to infected people in the element of area $d A$. Integration over $D$ gives the number of infections of the person at $A$ due to all the infected people in $D$. In rectangular coordinates (with the origin at the city's center), the exposure of a person at $A$ is

$$
E=\iint_{D} k f(P, A) d A=k \iint_{D} \frac{20-d(P, A)}{20} d A=k \iint_{D}\left[1-\frac{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}{20}\right] d x d y
$$

(b) If $A=(0,0)$, then

$$
\begin{aligned}
E & =k \iint_{D}\left[1-\frac{1}{20} \sqrt{x^{2}+y^{2}}\right] d x d y \\
& =k \int_{0}^{2 \pi} \int_{0}^{10}\left(1-\frac{r}{20}\right) r d r d \theta=2 \pi k\left[\frac{r^{2}}{2}-\frac{r^{3}}{60}\right]_{0}^{10} \\
& =2 \pi k\left(50-\frac{50}{3}\right)=\frac{200}{3} \pi k \approx 209 k
\end{aligned}
$$



For $A$ at the edge of the city, it is convenient to use a polar coordinate system centered at $A$. Then the polar equation for the circular boundary of the city becomes $r=20 \cos \theta$ instead of $r=10$, and the distance from $A$ to a point $P$ in the city is again $r$ (see the figure). So

$$
\begin{aligned}
E & =k \int_{-\pi / 2}^{\pi / 2} \int_{0}^{20 \cos \theta}\left(1-\frac{r}{20}\right) r d r d \theta=k \int_{-\pi / 2}^{\pi / 2}\left[\frac{r^{2}}{2}-\frac{r^{3}}{60}\right]_{r=0}^{r=20 \cos \theta} d \theta \\
& =k \int_{-\pi / 2}^{\pi / 2}\left(200 \cos ^{2} \theta-\frac{400}{3} \cos ^{3} \theta\right) d \theta=200 k \int_{-\pi / 2}^{\pi / 2}\left[\frac{1}{2}+\frac{1}{2} \cos 2 \theta-\frac{2}{3}\left(1-\sin ^{2} \theta\right) \cos \theta\right] d \theta \\
& =200 k\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta-\frac{2}{3} \sin \theta+\frac{2}{3} \cdot \frac{1}{3} \sin ^{3} \theta\right]_{-\pi / 2}^{\pi / 2}=200 k\left[\frac{\pi}{4}+0-\frac{2}{3}+\frac{2}{9}+\frac{\pi}{4}+0-\frac{2}{3}+\frac{2}{9}\right] \\
& =200 k\left(\frac{\pi}{2}-\frac{8}{9}\right) \approx 136 k
\end{aligned}
$$

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.
14.

$E$ is the solid above the region shown in the $x y$-plane and below the plane $z=x+y$. Thus,

$$
\begin{aligned}
\iiint_{E} x y d V & =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} \int_{0}^{x+y} x y d z d y d x=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} x y(x+y) d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}\left(x^{2} y+x y^{2}\right) d y d x=\int_{0}^{1}\left[\frac{1}{2} x^{2} y^{2}+\frac{1}{3} x y^{3}\right]_{y=x^{2}}^{y=\sqrt{x}} d x \\
& =\int_{0}^{1}\left(\frac{1}{2} x^{3}+\frac{1}{3} x^{5 / 2}-\frac{1}{2} x^{6}-\frac{1}{3} x^{7}\right) d x \\
& =\left[\frac{1}{8} x^{4}+\frac{2}{21} x^{7 / 2}-\frac{1}{14} x^{7}-\frac{1}{24} x^{8}\right]_{0}^{1}=\frac{1}{8}+\frac{2}{21}-\frac{1}{14}-\frac{1}{24}=\frac{3}{28}
\end{aligned}
$$

21. $V=\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{1}^{5-y} d z d y d x=\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}(5-y-1) d y d x=\int_{-3}^{3}\left[4 y-\frac{1}{2} y^{2}\right]_{y=-\sqrt{9-x^{2}}}^{y=\sqrt{9-x^{2}}} d x$

$$
\begin{aligned}
& =\int_{-3}^{3} 8 \sqrt{9-x^{2}} d x=8\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)\right]_{-3}^{3} \quad\left[\begin{array}{l}
\text { using trigonometric substitution or } \\
\text { Formula } 30 \text { in the Table of Integrals }
\end{array}\right] \\
& =8\left[\frac{9}{2} \sin ^{-1}(1)-\frac{9}{2} \sin ^{-1}(-1)\right]=36\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=36 \pi
\end{aligned}
$$

Alternatively, use polar coordinates to evaluate the double integral:

$$
\begin{aligned}
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}(4-y) d y d x & =\int_{0}^{2 \pi} \int_{0}^{3}(4-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{3} r^{3} \sin \theta\right]_{r=0}^{r=3} d \theta \\
& =\int_{0}^{2 \pi}(18-9 \sin \theta) d \theta \\
& =18 \theta+9 \cos \theta]_{0}^{2 \pi}=36 \pi
\end{aligned}
$$


40. $m=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} y d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[(1-x) y-y^{2}\right] d y d x$

$$
=\int_{0}^{1}\left[\frac{1}{2}(1-x)^{3}-\frac{1}{3}(1-x)^{3}\right] d x=\frac{1}{6} \int_{0}^{1}(1-x)^{3} d x=\frac{1}{24}
$$

$$
M_{y z}=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x y d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[\left(x-x^{2}\right) y-x y^{2}\right] d y d x
$$

$$
=\int_{0}^{1}\left[\frac{1}{2} x(1-x)^{3}-\frac{1}{3} x(1-x)^{3}\right] d x=\frac{1}{6} \int_{0}^{1}\left(x-3 x^{2}+3 x^{3}-x^{4}\right) d x=\frac{1}{6}\left(\frac{1}{2}-1+\frac{3}{4}-\frac{1}{5}\right)=\frac{1}{120}
$$

$$
M_{x z}=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} y^{2} d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[(1-x) y^{2}-y^{3}\right] d y d x
$$

$$
=\int_{0}^{1}\left[\frac{1}{3}(1-x)^{4}-\frac{1}{4}(1-x)^{4}\right] d x=\frac{1}{12}\left[-\frac{1}{5}(1-x)^{5}\right]_{0}^{1}=\frac{1}{60}
$$

$$
M_{x y}=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} y z d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[\frac{1}{2} y(1-x-y)^{2}\right] d y d x
$$

$$
=\frac{1}{2} \int_{0}^{1} \int_{0}^{1-x}\left[(1-x)^{2} y-2(1-x) y^{2}+y^{3}\right] d y d x=\frac{1}{2} \int_{0}^{1}\left[\frac{1}{2}(1-x)^{4}-\frac{2}{3}(1-x)^{4}+\frac{1}{4}(1-x)^{4}\right] d x
$$

$$
=\frac{1}{24} \int_{0}^{1}(1-x)^{4} d x=-\frac{1}{24}\left[\frac{1}{5}(1-x)^{5}\right]_{0}^{1}=\frac{1}{120}
$$

Hence $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{1}{5}, \frac{2}{5}, \frac{1}{5}\right)$.
50. (a) $f(x, y, z)$ is a joint density function, so we know $\iiint_{\mathbb{R}^{3}} f(x, y, z) d V=1$. Here we have

$$
\begin{aligned}
\iiint_{\mathbb{R}^{\mathfrak{s}}} f(x, y, z) d V & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d z d y d x=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} C e^{-(0.5 x+0.2 y+0.1 z)} d z d y d x \\
& =C \int_{0}^{\infty} e^{-0.5 x} d x \int_{0}^{\infty} e^{-0.2 y} d y \int_{0}^{\infty} e^{-0.1 z} d z \\
& =C \lim _{t \rightarrow \infty} \int_{0}^{t} e^{-0.5 x} d x \lim _{t \rightarrow \infty} \int_{0}^{t} e^{-0.2 y} d y \lim _{t \rightarrow \infty} \int_{0}^{t} e^{-0.1 z} d z \\
& =C \lim _{t \rightarrow \infty}\left[-2 e^{-0.5 x}\right]_{0}^{t} \lim _{t \rightarrow \infty}\left[-5 e^{-0.2 y}\right]_{0}^{t} \lim _{t \rightarrow \infty}\left[-10 e^{-0.1 z}\right]_{0}^{t} \\
& =C \lim _{t \rightarrow \infty}\left[-2\left(e^{-0.5 t}-1\right)\right] \lim _{t \rightarrow \infty}\left[-5\left(e^{-0.2 t}-1\right)\right] \lim _{t \rightarrow \infty}\left[-10\left(e^{-0.1 t}-1\right)\right] \\
& =C \cdot(-2)(0-1) \cdot(-5)(0-1) \cdot(-10)(0-1)=100 C
\end{aligned}
$$

So we must have $100 C=1 \Rightarrow C=\frac{1}{100}$.
(b) We have no restriction on $Z$, so

$$
\begin{aligned}
P(X \leq 1, Y \leq 1) & =\int_{-\infty}^{1} \int_{-\infty}^{1} \int_{-\infty}^{\infty} f(x, y, z) d z d y d x=\int_{0}^{1} \int_{0}^{1} \int_{0}^{\infty} \frac{1}{100} e^{-(0.5 x+0.2 y+0.1 z)} d z d y d x \\
& =\frac{1}{100} \int_{0}^{1} e^{-0.5 x} d x \int_{0}^{1} e^{-0.2 y} d y \int_{0}^{\infty} e^{-0.1 z} d z \\
& =\frac{1}{100}\left[-2 e^{-0.5 x}\right]_{0}^{1}\left[-5 e^{-0.2 y}\right]_{0}^{1} \lim _{t \rightarrow \infty}\left[-10 e^{-0.1 z}\right]_{0}^{t} \quad \quad \quad[\text { by part (a) }] \\
& =\frac{1}{100}\left(2-2 e^{-0.5}\right)\left(5-5 e^{-0.2}\right)(10)=\left(1-e^{-0.5}\right)\left(1-e^{-0.2}\right) \approx 0.07132
\end{aligned}
$$

(c) $P(X \leq 1, Y \leq 1, Z \leq 1)=\int_{-\infty}^{1} \int_{-\infty}^{1} \int_{-\infty}^{1} f(x, y, z) d z d y d x=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{100} e^{-(0.5 x+0.2 y+0.1 z)} d z d y d x$

$$
\begin{aligned}
& =\frac{1}{100} \int_{0}^{1} e^{-0.5 x} d x \int_{0}^{1} e^{-0.2 y} d y \int_{0}^{1} e^{-0.1 z} d z \\
& =\frac{1}{100}\left[-2 e^{-0.5 x}\right]_{0}^{1}\left[-5 e^{-0.2 y}\right]_{0}^{1}\left[-10 e^{-0.1 z}\right]_{0}^{1} \\
& =\left(1-e^{-0.5}\right)\left(1-e^{-0.2}\right)\left(1-e^{-0.1}\right) \approx 0.006787
\end{aligned}
$$

8. Since $2 r^{2}+z^{2}=1$ and $r^{2}=x^{2}+y^{2}$, we have $2\left(x^{2}+y^{2}\right)+z^{2}=1$ or $2 x^{2}+2 y^{2}+z^{2}=1$, an ellipsoid centered at the origin with intercepts $x= \pm \frac{1}{\sqrt{2}}, y= \pm \frac{1}{\sqrt{2}}, z= \pm 1$.
9. In cylindrical coordinates $E$ is the solid region within the cylinder $r=1$ bounded above and below by the sphere $r^{2}+z^{2}=4$, so $E=\left\{(r, \theta, z) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1,-\sqrt{4-r^{2}} \leq z \leq \sqrt{4-r^{2}}\right\}$. Thus the volume is

$$
\begin{aligned}
\iiint_{E} d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 2 r \sqrt{4-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1} 2 r \sqrt{4-r^{2}} d r=2 \pi\left[-\frac{2}{3}\left(4-r^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{4}{3} \pi\left(8-3^{3 / 2}\right)
\end{aligned}
$$

39. The region $E$ of integration is the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=2$ in the first octant. Because $E$ is in the first octant we have $0 \leq \theta \leq \frac{\pi}{2}$. The cone has equation $\phi=\frac{\pi}{4}$ (as in Example 4), so $0 \leq \phi \leq \frac{\pi}{4}$, and $0 \leq \rho \leq \sqrt{2}$. So the integral becomes
$\int_{0}^{\pi / 4} \int_{0}^{\pi / 2} \int_{0}^{\sqrt{2}}(\rho \sin \phi \cos \theta)(\rho \sin \phi \sin \theta) \rho^{2} \sin \phi d \rho d \theta d \phi$

$$
\begin{aligned}
& =\int_{0}^{\pi / 4} \sin ^{3} \phi d \phi \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta \int_{0}^{\sqrt{2}} \rho^{4} d \rho=\left(\int_{0}^{\pi / 4}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi\right)\left[\frac{1}{2} \sin ^{2} \theta\right]_{0}^{\pi / 2}\left[\frac{1}{5} \rho^{5}\right]_{0}^{\sqrt{2}} \\
& =\left[\frac{1}{3} \cos ^{3} \phi-\cos \phi\right]_{0}^{\pi / 4} \cdot \frac{1}{2} \cdot \frac{1}{5}(\sqrt{2})^{5}=\left[\frac{\sqrt{2}}{12}-\frac{\sqrt{2}}{2}-\left(\frac{1}{3}-1\right)\right] \cdot \frac{2 \sqrt{2}}{5}=\frac{4 \sqrt{2}-5}{15}
\end{aligned}
$$

