Math 217 Assignment 6 Due Friday October 30

■ Problems from the text (do NOT turn in these problems):

- Section 16.1: 8–14.
- Section 16.2: 15–31, 35–36.
- Section 16.3: 7-28, 31-34, 39-50, 55-56, 59-61.
- Section 16.4: 7–35.

■ Problems to turn in:

- 1. Using a Riemann sum with four rectangles and choosing the sample points to be the lower right corners, approximate the volume of the solid that lies below the surface $z = x + 2y^2$ and above the domain $D = [0, 2] \times [0, 4]$. What would your answer be if you use the midpoint rule to estimate the same volume?
- 2. Find the volume of each of the solids described below:
 - (a) in the first octant bounded by the cylinder $z = 16 x^2$ and the plane y = 5.
 - (b) bounded by the planes z = x, y = x, x + y = 2 and z = 0.
 - (c) bounded by the cylinders $x^2 + y^2 = r^2$ and $y^2 + z^2 = r^2$.
 - (d) bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 x^2 y^2$.
- 3. Calculate the double integrals:

(a)
$$\iint_{R} \frac{1+x^{2}}{1+y^{2}} dA$$
, $R = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$,
(b) $\iint_{D} (x+y) dA$, D is bounded by $y = \sqrt{x}$ and $y = x^{2}$,
(c) $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx$.

4. For each of the two problems below, sketch the region of integration and reverse the order of integration. For the second problem, evaluate the resulting integral.

(a)
$$\int_0^1 \int_{arctan(x)}^{\frac{\pi}{4}} f(x,y) \, dy \, dx$$
 (b) $\int_0^1 \int_x^1 e^{\frac{x}{y}} dy \, dx$.

- 5. (a) A cylindrical drill with radius r_1 is used to bore a hole through the center of a sphere of radius r_2 . Find the volume of the ring-shaped solid that remains.
 - (b) Express the volume in part (a) in terms of the height h of the ring. Notice that the volume depends on r_1 and r_2 only through h.