Math 217 Assignment 2

Due Friday September 25
■ Problems from the text (do NOT turn in these problems):

- Section 13.5: 1, 6-12, 19-38, 52-56, 62-66, 68-72, 74-78.
- Section 13.6: 3-8, 21-28, 32-36, 41-46, 49-50.
- Section 14.1: 1-6, 7-12, 14-15, 26-28, 41-42.
- Section 14.2: 6-8, 12-16, 18-20, 24-26, 30-32, 36-40, 46-51.

\square Problems to turn in:

1. Find the equation of the plane that passes through the line of intersection of the planes $x-z=1$ and $y+2 z=3$ and is perpendicular to the plane $x+y-2 z=1$.
2. Check whether the lines given by the parametric equations

$$
\left\{\begin{array} { l l }
{ x } & { = 1 + t } \\
{ y } & { = 1 + 6 t } \\
{ z } & { = 2 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x & =1+2 s \\
y & =5+15 s \\
z & =-2+6 s
\end{array}\right.\right.
$$

are parallel, intersecting or skew. If they are non-intersecting, find the distance between them.
3. Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the $y z$-plane. Identify the surface.
4. Show that the curve of intersection of the surfaces

$$
x^{2}+2 y^{2}-z^{2}+3 x=1 \quad \text { and } \quad 2 x^{2}+4 y^{2}-2 z^{2}-5 y=0
$$

lies in a plane.
5. The positions of two moving particles are given by the vector equations

$$
\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle,
$$

where t denotes time. Do the particles collide? Do their paths intersect?
6. Find the parametric form of the tangent line to the curve

$$
x=\ln t, \quad y=2 \sqrt{t}, \quad z=t^{2}
$$

at the point $(0,2,1)$.
7. At what point do the curves

$$
\mathbf{r}_{1}(t)=\left\langle t, 1-t, 3+t^{2}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(s)=\left\langle 3-s, s-2, s^{2}\right\rangle
$$

intersect? Find their angle of intersection.
8. Evaluate the integral

$$
\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t
$$

