Math 217 Assignment 10

Due Friday December 4

■ Problems to turn in:

1. Evaluate
(a) the surface integral

$$
\iint_{S} y d S
$$

where S is the surface $z=\frac{2}{3}\left(x^{\frac{3}{2}}+y^{\frac{3}{2}}\right), 0 \leq x \leq 1,0 \leq y \leq 1$.
(b) the surface integral

$$
\iint_{S} x z d S
$$

where S is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$ and $x+y=5$.
2. Find the flux of $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}$ across the surface S which is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with downward orientation.
3. Evaluate

$$
\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve $\mathbf{r}(t)=\langle\sin t, \cos t, \sin 2 t\rangle, 0 \leq t \leq 2 \pi$.
4. Suppose that S is an oriented smooth surface bounded by a simple closed curve C with positive orientation, and f, g have continuous second-order partial derivatives on an open region containing S. Show that
(a) $\int_{C}(f \nabla g) \cdot d \mathbf{r}=\iint_{S}(\nabla f \times \nabla g) \cdot d \mathbf{S}$.
(b) $\int_{C}(f \nabla f) \cdot d \mathbf{r}=0$.
5. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ and

$$
\mathbf{F}(x, y, z)=x y \sin z \mathbf{i}+\cos (x z) \mathbf{j}+y \cos z \mathbf{k} .
$$

6. (a) Let $\mathbf{F}(x, y, z)=z \arctan \left(y^{2}\right) \mathbf{i}+z^{3} \ln \left(x^{2}+1\right) \mathbf{j}+z \mathbf{k}$. Find the flux of \mathbf{F} across the part of the paraboloid $x^{2}+y^{2}+z=2$ that lies above the plane $z=1$ and is oriented upward.
(b) Evaluate

$$
\iint_{S}\left(2 x+2 y+z^{2}\right) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=1$.
7. Show that for any smooth vector field in \mathbb{R}^{3}, the flux of the curl of the vector field across any surface enclosing a simple solid is zero.

