Math 217 Formula Sheet

1. Volume of a parallelepiped determined by the vectors a, b and c :

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| .
$$

2. Distance D from a point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+$ $c z+d=0$:

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

3. Curvature of a curve:

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

4. Tangential and normal components of acceleration:

$$
\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}, \quad v=\left|\mathbf{r}^{\prime}(t)\right|
$$

5. Second derivatives test for max/min: Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $\nabla f(a, b)=\mathbf{0}$. Let

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local min.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local max.
(c) If $D<0$ then $f(a, b)$ is not a local max or min.
6. Expectation of a random variable: If X and Y are random variables with joint density f, the expected values of X and Y are

$$
\begin{aligned}
\mu_{1} & =\iint_{\mathbb{R}^{2}} x f(x, y) d A \\
\mu_{2} & =\iint_{\mathbb{R}^{2}} y f(x, y) d A .
\end{aligned}
$$

7. Center of mass: The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$
\begin{gathered}
\bar{x}=\frac{1}{m} \iint_{D} x \rho(x, y) d A, \quad \bar{y}=\frac{1}{m} \iint_{D} y \rho(x, y) d A \\
m=\iint_{D} \rho(x, y) d A .
\end{gathered}
$$

8. Fundamental Theorem of Line Integrals: If f is a scalar function with continuous first partial derivarives, and $C=\{\mathbf{r}(t): a \leq$ $t \leq b\}$ is a smooth curve, then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

9. Green's Theorem: Let C be a positively oriented, simple, closed curve in the plane and D the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

10. Stokes' Theorem: Let S be an oriented piecewise smooth surface that is bounded by a simple closed piecewise smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} .
$$

11. Divergence Theorem: Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V .
$$

