Homework 3 - Math 440/508

Due Friday November 7 at the end of lecture.

Problem 1. Let (Ω, d) be a metric space, $G \subseteq \mathbb{C}$ an open set, and ρ the metric we have defined in class on the space of continuous functions $C(G, \Omega)$. Prove the following facts about ρ :
(a) If $\epsilon>0$ is given then there is a $\delta>0$ and a compact set $K \subset G$ such that for any $f, g \in C(G, \Omega)$

$$
\sup _{z \in K} d(f(z), g(z))<\delta \Longrightarrow \rho(f, g)<\epsilon
$$

(b) Conversely, if $\delta>0$ and a compact set K are given, there is an $\epsilon>0$ such that for $f, g \in C(g, \Omega)$,

$$
\rho(f, g)<\epsilon \Longrightarrow \sup _{z \in K} d(f(z), g(z))<\delta .
$$

(c) Use parts (a) and (b) to obtain the following characterization of open sets in the topology $(C(G, \Omega), \rho)$: A set $\mathcal{O} \subset C(G, \Omega)$ is open if and only if for each $f \in \mathcal{O}$ there is a compact set K and a $\delta>0$ such that

$$
\{g: d(f(z), g(z))<\delta, z \in K\} \subset \mathcal{O}
$$

Problem 2. Recall that the definition of the metric ρ on $C(G, \Omega)$ involved a sequence $\left\{K_{n}: n \geq 1\right\}$ of compact subsets of G. Show that the topology on $C(G, \Omega)$ generated by ρ is invariant under the choice of these sets.

Problem 3. Show that $(C(G, \Omega), \rho)$ is a complete metric space if and only if (Ω, d) is complete.

Problem 4. Suppose that $\mathcal{F} \subseteq C(G, \Omega)$ is equicontinuous at each point of G; then show that \mathcal{F} is equicontinuous over each compact subset of G.

Problem 5. Let $\left(X_{n}, d_{n}\right)$ be a metric space for each $n \geq 1$ and let $X=$ $\prod_{n=1}^{\infty} X_{n}$ be their Cartesian product. That is, $X=\left\{\xi=\left\{x_{n}\right\}: x_{n} \in\right.$ X_{n} for each $\left.n \geq 1\right\}$. For $\xi=\left\{x_{n}\right\}$ and $\eta=\left\{y_{n}\right\}$ in X define

$$
d(\xi, \eta)=\sum_{n=1}^{\infty} 2^{-n} \frac{d_{n}\left(x_{n}, y_{n}\right)}{1+d_{n}\left(x_{n}, y_{n}\right)}
$$

(a) Verify that (X, d) as defined above is a metric space.
(b) Show that convergence in the topology of X is equivalent to coordinatewise convergence.
(c) If $\left(X_{n}, d_{n}\right)$ is compact for every $n \geq 1$, then X is compact.

Problem 6. This exercise shows how the mean square convergence dominates the uniform convergence of analytic functions. If U is an open subset of \mathbb{C} we use the notation

$$
\|f\|_{L^{2}(U)}=\left[\int_{U}|f(z)|^{2} d x d y\right]^{\frac{1}{2}}
$$

for the mean square norm, and

$$
\|f\|_{L^{\infty}(U)}=\sup _{z \in U}|f(z)|
$$

for the sup norm.
(a) If f is holomorphic in a neighborhood of the disk $B\left(z_{0} ; r\right)$, show that for any $0<s<r$ there exists a constant $C_{r, s}$ (depending only on r and s but independent of f or z_{0}) such that

$$
\|f\|_{L^{\infty}\left(B\left(z_{0} ; s\right)\right)} \leq C_{r, s}\|f\|_{L^{2}\left(B\left(z_{0} ; r\right)\right)}
$$

(b) Prove that if $\left\{f_{n}\right\}$ is a Cauchy sequence of holomorphic functions in the mean square norm $\|\cdot\|_{L^{2}(U)}$, then the sequence $\left\{f_{n}\right\}$ converges uniformly on every compact subset U to a holomorphic function.

Problem 7.

(a) Let X and Ω be metric spaces and suppose that $f: X \rightarrow \Omega$ is one-one and onto. Show that f is an open map if and only if f is a closed map.
(b) Let $P: \mathbb{C} \rightarrow \mathbb{R}$ be defined by $P(z)=\operatorname{Re}(z)$. Show that P is an open map but not closed.

Problem 8. It is easy to see that pointwise convergence of a sequence of continuous functions is in general a weaker condition than convergence of compacta. However, under certain additional hypotheses, the former implies the latter. This problem illustrates two such examples.
(a) Consider $C(G, \mathbb{R})$ and suppose that $\left\{f_{n}\right\}$ is a sequence in $C(G, \mathbb{R})$ which is monotonically increasing (i.e., $f_{n}(z) \leq f_{n+1}(z)$ for all $z \in G$) and satisfies

$$
\lim _{n \rightarrow \infty} f_{n}(z)=f(z) \quad \text { for all } z \in G \text { where } f \in C(G, \mathbb{R})
$$

Show that $f_{n} \xrightarrow{\rho} f$. This result is due to Dini.
(b) Let $\left\{f_{n}\right\} \subset C(G, \Omega)$ and suppose that $\left\{f_{n}\right\}$ is equicontinuous. If $f \in$ $C(G, \Omega)$ and $f_{n}(z) \rightarrow f(z)$ for each z then show that $f_{n} \xrightarrow{\rho} f$.

Problem 9. Let f be analytic on the unit disk with series expansion $\sum_{n \geq 0} a_{n} z^{n}$ at 0 . Let $\mu=\inf \{|f(z)|:|z|=1\}$, and suppose that f has at most m zeroes in $B(0 ; 1)$. Prove that

$$
\mu \leq\left|a_{0}\right|+\cdots+\left|a_{m}\right| .
$$

Problem 10. Let $\mathcal{F} \subseteq C(G, \mathbb{C})$, where G is an open subset of \mathbb{C}. If \mathcal{F} is pointwise bounded, i.e.,

$$
\sup \{|f(z)|: f \in \mathcal{F}\}<\infty \quad \text { for all } z \in G,
$$

does this imply that \mathcal{F} is locally bounded? Would your answer change if \mathcal{F} was required to be a subset of $\mathbb{H}(G)$?
(Hint : For the second part of the question, argue that it suffices to create a sequence of analytic functions that converges pointwise to a non-analytic function. Then construct such a sequence of analytic functions (in fact a sequence of polynomials), taking for granted the following fact: Let K be a compact subset of the complex plane with connected complement. Let f be a function analytic in a neighborhood of K. Then there is a sequence of polynomials which converges to f uniformly on K. Choose a sequence of compact (but not necessarily connected) sets K_{n} gradually filling up \mathbb{C}, and a sequence of functions g_{n} analytic on an open neighborhood of K_{n} on which the statement above may be applied.)

