# Math 440/508, Fall 2008, Final Exam (Due date: Monday December 8) 

## Instructions

- Please drop off your final exam in the instructor's office by 5 pm on Monday December 8. Slide your paper under the door if the office is closed.
- Unlike homework assignments, you must work on the final on your own. If you need hints or clarifications, please feel free to talk to the instructor.
- Answers should be clear, legible, and in complete English sentences. Solutions must be self-contained - only results proved in class can be used without proof.

1. Prove that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous on $\mathbb{C}$ and holomorphic on $\mathbb{C} \backslash \mathbb{R}$, then $f$ is entire.
2. Given two sequences of complex numbers $\left\{a_{k}: k \geq 0\right\}$ and $\left\{b_{k}: k \geq 0\right\}$, with $\left|a_{k}\right| \rightarrow \infty$, it is always possible to find an entire function $F$ that satisfies $F\left(a_{k}\right)=b_{k}$ for all $k$. Prove this result in the following two steps.
(a) First deal with the "finite" case: namely, given $n$ distinct complex numbers $a_{1}, \cdots, a_{n}$ and another $n$ complex numbers $b_{1}, \cdots, b_{n}$, construct a polynomial $P$ of degree $\leq n-1$ with

$$
P\left(a_{i}\right)=b_{i} \quad \text { for } i=1, \cdots, n .
$$

(b) Now let $\left\{a_{k}: k \geq 0\right\}$ be a sequence of distinct complex numbers such that $a_{0}=0$ and $\left|a_{k}\right| \rightarrow \infty$, and $E(z)$ denote a Weierstrass product associated with $\left\{a_{k}\right\}$. Given complex numbers $\left\{b_{k}: k \geq 0\right\}$, show that there exist integers $m_{k} \geq 1$ such that the series

$$
F(z)=\frac{b_{0}}{E^{\prime}(0)} \frac{E(z)}{z}+\sum_{k=1}^{\infty} \frac{b_{k}}{E^{\prime}\left(a_{k}\right)} \frac{E(z)}{z-a_{k}}\left(\frac{z}{a_{k}}\right)^{m_{k}}
$$

defines an entire function that satisfies

$$
F\left(a_{k}\right)=b_{k} \quad \text { for all } k \geq 0 .
$$

The formula above is known as the Pringsheim interpolation formula.
3. Does there exist a holomorphic surjection from the unit disk to $\mathbb{C}$ ?
4. Prove that the function $u$ defined by

$$
u(z)=\operatorname{Re}\left(\frac{i+z}{i-z}\right), \quad u(0,1)=0
$$

is harmonic in the unit disk and vanishes on its boundary. Why does this not contradict the harmonic extension thoerem (as stated for instance on page 277, Gamelin)?

