Math 263 Fall 2008, Test 2 Solutions

1. Let F(z,y,2) = (sinx,2cosz,1 — y?).
(a) Calculate curl F.
(b) Calculate div F.
(c) Calculate div(curl F).
Solution: .
(a) curl F = (—2y)i — (2sin2)k.
(b) div F = cosz.
(c) div(curl F)=0. This is true for any vector field.

2. Sketch the domain of integration for the integral given below. Then convert the integral
to spherical coordinates and evaluate it.
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Solution:
The integral represents the top half of a sphere of radius 3, centred at the origin. Con-
verting to spherical coordinates, we get:
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3. Is the vector field F(z,y,2) = (2zy + y*)i + (2* + 2zy + 2?)j + 2z2yk conservative? If so,

find a function f so that F = V f. If not, explain clearly why.
Solution:

We can check that F' is conservative by checking that the curl is zero. Alternatively, you
could just try to create a function f(z,y,z) so that F = Vf. By partially integrating
(2zy + y?) with respect to x, you get f = 2%y + y*x + ... By partially integrating (22 +
22y + 2%) with respect to y, you get f = 2%y +xy®+ 2%y +.... By partially integrating 22y
with respect to z, you get f = 2%y + .... Putting these all together, f = 2%y + y?z + 2%y
is a potential function for the vector field, and the vector field is therefore conservative.

4. Find the line integral of F(x,y,2) = (yz)i + (z2)j + (zy + 1)k around the square with
corners at (0,0,1),(1,0,1), (1 ,1) and (0,1,1) (taken in that order).
Solution:
This is a vector integral around a closed curve in 3-d. Green’s theorem does not apply

because it is in 3-d. However, if F' is conservative, then we know that the integral will be
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0. We can check if I is conservative using the curl test: curlF = 0 (check it!). Therefore
F'is conservative and the integral of I’ around any closed curve is zero.



d.

(a) State Green’s theorem for fc F - dr where C is a simple, positively oriented, closed
curve in the (x,y) plane and F(z,y) = P(z,y)i+ Q(z,y)j is a two dimensional vector
field.

(b) Compute the work done by the force field F(x,y) = i+ zj on a particle that makes
one counterclockwise revolution around the circle 22 + y? = 1.

(¢) Compute the work done by the force field F(z,y) = i+ zj on a particle that travels
from (1,0) to (0, 1), counterclockwise along part of the circle z? + y* = 1.

Solution:
(a) Green’s theorem says that
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where D is the region enclosed by C.
(b) Directly apply Green’s theorem.
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where D is the circular region 2% + 3? < 1. The double integral is just the area of D
so the answer is W = 7.

(c) The curve is not closed in this case. Therefore Green’s theorem does not apply
and we have to parameterize the curve. We use polar coordinates for simplicity:
7(0) = cos i +sinfj on 0 < 6 < m/2.
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