Math 263 Fall 2008, Test 2 Solutions

1. Let $\mathbf{F}(x, y, z)=\left(\sin x, 2 \cos x, 1-y^{2}\right)$.
(a) Calculate curl \mathbf{F}.
(b) Calculate div F.
(c) Calculate $\operatorname{div}($ curl $\mathbf{F})$.

Solution:

(a) curl $\mathbf{F}=(-2 y) \vec{i}-(2 \sin x) \vec{k}$.
(b) $\operatorname{div} \mathbf{F}=\cos x$.
(c) $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$. This is true for any vector field.
2. Sketch the domain of integration for the integral given below. Then convert the integral to spherical coordinates and evaluate it.

$$
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} \quad d z d y d x
$$

Solution:

The integral represents the top half of a sphere of radius 3, centred at the origin. Converting to spherical coordinates, we get:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{3}(\rho \cos \phi) \rho \quad \rho^{2} \sin \phi \quad d \rho d \phi d \theta \\
= & 2 \pi\left(\int_{0}^{3} \rho^{4} d \rho\right)\left(\int_{0}^{\pi / 2} \cos \phi \sin \phi d \phi\right) \\
= & 2 \pi\left(\frac{3^{5}}{5}\right) \int_{0}^{\pi / 2} \frac{1}{2} \sin 2 \phi d \phi \\
= & 2 \pi\left(\frac{3^{5}}{5}\right)\left[-\frac{1}{4} \cos 2 \phi\right]_{0}^{\pi / 2} \\
= & 2 \pi\left(\frac{3^{5}}{5}\right)\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{243 \pi}{5}
\end{aligned}
$$

3. Is the vector field $\mathbf{F}(x, y, z)=\left(2 x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y+z^{2}\right) \mathbf{j}+2 z y \mathbf{k}$ conservative? If so, find a function f so that $\mathbf{F}=\nabla f$. If not, explain clearly why.

Solution:

We can check that F is conservative by checking that the curl is zero. Alternatively, you could just try to create a function $f(x, y, z)$ so that $\mathbf{F}=\nabla f$. By partially integrating $\left(2 x y+y^{2}\right)$ with respect to x, you get $f=x^{2} y+y^{2} x+\ldots$ By partially integrating $\left(x^{2}+\right.$ $2 x y+z^{2}$) with respect to y, you get $f=x^{2} y+x y^{2}+z^{2} y+\ldots$. By partially integrating $2 z y$ with respect to z, you get $f=z^{2} y+\ldots$. Putting these all together, $f=x^{2} y+y^{2} x+z^{2} y$ is a potential function for the vector field, and the vector field is therefore conservative.
4. Find the line integral of $\mathbf{F}(x, y, z)=(y z) \mathbf{i}+(x z) \mathbf{j}+(x y+1) \mathbf{k}$ around the square with corners at $(0,0,1),(1,0,1),(1,1,1)$ and $(0,1,1)$ (taken in that order).

Solution:

This is a vector integral around a closed curve in 3-d. Green's theorem does not apply because it is in 3-d. However, if \mathbf{F} is conservative, then we know that the integral will be

0 . We can check if F is conservative using the curl test: curlF $=0$ (check it!). Therefore F is conservative and the integral of F around any closed curve is zero.
5. (a) State Green's theorem for $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is a simple, positively oriented, closed curve in the (x, y) plane and $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a two dimensional vector field.
(b) Compute the work done by the force field $\mathbf{F}(x, y)=\mathbf{i}+x \mathbf{j}$ on a particle that makes one counterclockwise revolution around the circle $x^{2}+y^{2}=1$.
(c) Compute the work done by the force field $\mathbf{F}(x, y)=\mathbf{i}+x \mathbf{j}$ on a particle that travels from $(1,0)$ to $(0,1)$, counterclockwise along part of the circle $x^{2}+y^{2}=1$.
Solution:
(a) Green's theorem says that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where D is the region enclosed by C.
(b) Directly apply Green's theorem.

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}(1-0) d A
$$

where D is the circular region $x^{2}+y^{2}<1$. The double integral is just the area of D so the answer is $W=\pi$.
(c) The curve is not closed in this case. Therefore Green's theorem does not apply and we have to parameterize the curve. We use polar coordinates for simplicity: $\vec{r}(\theta)=\cos \theta \vec{i}+\sin \theta \vec{j}$ on $0 \leq \theta \leq \pi / 2$.

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi} \mathbf{F}(\vec{r}(\theta)) \cdot \vec{r}^{\prime}(\theta) d \theta \\
& =\int_{0}^{\pi}\binom{1}{\cos \theta} \cdot\binom{-\sin \theta}{\cos \theta} d \theta=\int_{0}^{\pi} \cos ^{2} \theta d \theta \\
& =\int_{0}^{\pi} \frac{1}{2}(1+\cos 2 \theta) d \theta=\frac{\pi}{2}
\end{aligned}
$$

