Math 263 Assignment 9

Due November 26

Problems from the text (do NOT turn in these problems):

(17.7) 5-13, 19-30. (17.8) 2-10. (17.9) 5-15, 19, 20.

Problems to turn in:

1. Find the flux of $\vec{F}=\left(x^{2}+y^{2}\right) \vec{k}$ through the disk of radius 3 centred at the origin in the $x y$ plane and oriented upward.
2. For each of these situations, (i) Sketch S, (ii) Parametrize S, (iii) find the vector and scalar elements $d \vec{S}$ and $d S$ for your parametrization, (iv) calculate the indicated surface or flux integral.
(a) S given by $z=x^{2} y^{2},-1 \leq x \leq 1,-1 \leq y \leq 1$ oriented positive up. Calculate $\iint_{S} \vec{F} \cdot d \vec{S}$ for $\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}$.
(b) S is the surface of $4 x^{2}+4 y^{2}+z^{2}-6 z+5=0$ oriented inward. Calculate the surface area of S.
(c) S is the surface of intersection of the sphere $x^{2}+y^{2}+z^{2} \leq 4$ and the plane $z=1$ oriented away from the origin. Calculate the flux through the surface of the electrical field $\vec{E}(\vec{r})=\frac{\vec{r}}{|\vec{r}|^{3}}$.
3. For constants a, b, c, m, consider the vector field

$$
\vec{F}=(a x+b y+5 z) \vec{i}+(x+c z) \vec{j}+(3 y+m x) \vec{k} .
$$

(a) Suppose that the flux of \vec{F} through any closed surface is 0 . What does this tell you about the value of the constants a, b, c and m ?
(b) Suppose instead that the line integral of \vec{F} around any closed curve is 0 . What does this tell you about the values of the constants a, b, c and m ?
4. Let $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$. Consider the vector field

$$
\vec{E}=\frac{\vec{r}}{|\vec{r}|^{3}} .
$$

Find $\int_{S} \vec{E} . d \vec{A}$ where S is the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=6$. Give reasons for your calculation.
5. Use geometric reasoning to find $I=\iint_{S} \vec{F} . d \vec{S}$ by inspection for the following three situations. Explain your answers. In each case, a and b are positive constants.
(a) $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$ and S is the surface consisting of three squares with one corner at the origin and positive sides facing the first octant. The squares have sides ($b \vec{i}$ and $b \vec{j}),(b \vec{j}$ and $b \vec{k})$, and ($b \vec{i}$ and $b \vec{k}$), respectively.
(b) $\vec{F}(x, y, z)=(x \vec{i}+y \vec{j}) \ln \left(x^{2}+y^{2}\right)$, and S is the surface of the cylinder (including top and bottom) where $x^{2}+y^{2} \leq a^{2}$ and $0 \leq z \leq b$.
(c) $\vec{F}(x, y, z)=(x \vec{i}+y \vec{j}+z \vec{k}) e^{-\left(x^{2}+y^{2}+z^{2}\right)}$, and S is the spherical surface $z^{2}+y^{2}+z^{2}=a^{2}$.
6. Let S be the boundary surface of the solid given by $0 \leq z \leq \sqrt{4-y^{2}}$ and $0 \leq x \leq \frac{\pi}{2}$.
(a) Find the outward unit normal vector field \vec{N} on each of the four sides of S.
(b) Find the total outward flux of $\vec{F}=4 \sin x \vec{i}+z^{3} \vec{j}+y z^{2} \vec{k}$ through S.

Do the calculation directly (don't use the Divergence theorem).
7. Evaluate, both by direct integration and by Stokes' Theorem, $\int_{C}(z d x+x d y+y d z)$ where C is the circle $x+y+z=0, x^{2}+y^{2}+z^{2}=1$. Orient C so that its projection on the $x y$-plane is counterclockwise.
8. Evaluate $\int_{C}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y$ where C is the counterclockwise boundary of the trapezoid with vertices $(0,-2),(1,-1),(1,1)$ and $(0,2)$.
9. Evaluate $\int_{C} \vec{F} . d \vec{r}$ where $\vec{F}=y e^{x} \vec{i}+\left(x+e^{x}\right) \vec{j}+z^{2} \vec{k}$ and C is the curve

$$
\vec{r}(t)=(1+\cos t) \vec{i}+(1+\sin t) \vec{j}+(1-\sin t-\cos t) \vec{k}
$$

