
Math 263 Assignment 7

SOLUTIONS

Problems to turn in:

(1) In each case sketch the region and then compute the volume of the solid region.

(a) The “ice-cream cone” region which is bounded above by the hemisphere z =
√

a2 − x2 − y2

and below by the cone z =
√

x2 + y2.

Solution. In spherical coordinates,

V =

∫ 2π

0

∫ π/4

0

∫ a

0
ρ2 sinφdρdφdθ = 2π

∫ π/4

0
sin φρ3/3

]a
0
dφ

= 2π (− cos φ)]
π/4
0 a3/3 =

2πa3

3
(− cos π/4 + cos 0) =

πa3(2 −
√

2)

3

or in cylindrical coordinates,

V =

∫ 2π

0

∫ a/
√

2

0

∫ √
a2−r2

r
rdzdrdθ = 2π

∫ a/
√

2

0
(r
√

a2 − r2 − r2)dr

= 2π

[
−(a2 − r2)3/2 − r3

3

]a/
√

2

0

= 2π
−(a2 − a2/2)3/2 + (a2 − 02)3/2 − (a/

√
2)3 + (0)3

3

= 2π

(
a3 − 2a3/2

√
2

3

)
=

πa3(2 −
√

2)

3
.

(b) The region bounded by z = x2 + 3y2 and z = 4 − y2.

Solution. The parabolic cylinder z = 4− y2 comprises the top of the surface (considered
in terms of z) and the paraboloid z = x2 + 3y2 is the bottom surface in terms of z. To
determine the region of the xy-plane which the region bounded by these two surfaces lies
over, we intersect the two surfaces, in this case we can set them equal to each other. We
see that x2 + 3y2 = 4− y2 if and only if x2 + 4y2 = 4 if and only if (x/2)2 + y2 = 1. We will
set up and compute the integral of this volume in rectangular coordinates (using a table of
integrals to compute the anti-derivative

∫
(4 − x2)3/2dx).

V =

∫ 2

−2

∫ √
4−x2/2

−
√

4−x2/2

∫ 4−y2

x2+3y2

dzdydx =

∫ 2

−2

∫ √
4−x2/2

−
√

4−x2/2
(4 − x2 − 4y2)dydx

=

∫ 2

−2

[
(4 − x2)y − (4/3)y3

]√4−x2/2

−
√

4−x2/2
dx = 2

∫ 2

−2

(
(4 − x2)3/2

2
− (4 − x2)3/2

6

)
dx

=
2

3

∫ 2

−2
(4 − x2)3/2dx =

2

3

[
x

8

(
5 · 22 − 2x2)

√
4 − x2 +

3 · 24

8
sin−1(x/2)

)]2

−2

= 4(sin−1(1) − sin−1(−1)) = 4π

Another way to compute this integral would be to make a substitution x = 2u, so

dx = 2du and we would be integrate over a circle of radius 1 in (u, y), which we will call R̃
whereas the ellipse will be called R. This makes everything much simpler. Lets see what
happens.
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V =

∫ ∫

R

(∫ 4−y2

x2+3y2

dz

)
dA =

∫ ∫

R
(4 − x2 − 4y2)dxdy =

∫ ∫

eR
(4 − 4u2 − 4y2)2dudy

=

∫ 2π

0

∫ 1

0
(4 − 4r2)2rdrdθ =

∫ 2π

0
dθ

∫ 1

0
(8r − 8r3)dr = 2π

[
4r2 − 2r4

]1
0

= 2π(4 − 2) = 4π

(c) A sphere with a cylindrical hole bored through its centre. Specifically, the region
inside the sphere x2 + y2 + z2 = 9 and outside the cylinder x2 + y2 = 4.

Solution. A sphere of radius 3 has volume VS = 36π. Let VC denote the volume inside the
given sphere and the given cylinder simultaneously. The the volume we want, V = VS −VC .
Let’s compute VC using cylindrical coordinates.

VC =

∫ 2π

0

∫ 2

0

∫ (9−r2)1/2

−(9−r2)1/2

rdzdrdθ =

∫ 2π

0

∫ 2

0
(9 − r2)1/22rdrdθ

= 2π

[−2

3
(9 − r2)3/2

]2

0

=
4π

3
(93/2 − 53/2) = 36π − 4π53/2

3
;

hence V = VS − VC = 4π53/2

3 .

(2) Switch these integrals to spherical coordinates and compute:
Solution. I1 is an integral over the top half of a solid sphere of radius 3, centred at the

origin.

I1 =

∫ 3

−3

∫ √
9−x2

−
√

9−x2

∫ √
9−x2−y2

0
z
√

x2 + y2 + z2 dzdydx

=

∫ π/2

φ=0

∫ 2π

θ=0

∫ 3

ρ=0
[ρ cos φ]

√
ρ2ρ2 sin φdρdθdφ

=

(∫ π/2

0
sin φ cos φdφ

)(∫ 2π

0
dθ

)(∫ 3

0
ρ4dρ

)

=

[
1

2
sin2 φ

]π/2

0

(2π)

(
35

5

)
=

243π

5

I2 is a solid region contained within x > 0, y > 0, z > 0. The solid is above the cone

z =
√

x2 + y2 and below the sphere x2 + y2 + z2 = 18. To check this, note that the cone
meets the sphere at the height where z2 + z2 = 18, z = 3, and the ring where they intersect
is x2 + y2 = 9. The angle of the point of the bottom of the cone is φ = π/4. Putting this
together, we have
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I2 =

∫ 3

0

∫ √
9−y2

0

∫ √
18−x2−y2

√
x2+y2

(x2 + y2 + z2) dzdydx

=

∫ π/4

φ=0

∫ π/2

θ=0

∫ √
18

ρ=0
[ρ2]ρ2 sin φdρdθdφ

=

(∫ π/4

φ=0
sin φdφ

)(∫ π/2

θ=0
dθ

)(∫ √
18

ρ=0
ρ4dρ

)

= [− cos φ]
π/4
0

(π

2

)((3
√

2)5

5

)
=

486π

5
(
√

2 − 1)

(3) Calculate the moment of inertia of a circular pipe of outer radius a, inner radius b, length
L and uniform density R, rotating about its centre axis. From your answer, let b → 0 and
derive the formula for a solid cylinder too.

Solution. Line the cylinder up along the z-direction and then the integral we need is easy
to do in cylindrical coordinates:

∫ ∫ ∫
(x2 + y2)RdV = R

∫ 2π

0

∫ L

0

∫ a

b
r2rdrdzdθ =

2

5
πLR(a4 − b4).

Letting b → 0, we obtain the moment of inertia of a solid cylinder, (2/5)πLRa4.

(4) Find the gradient vector field of f(x, y) =
√

x2 + y2 and g(x, y) = x2 − y. In each case,
plot the gradient vector field and the contour plot of the function, on the same diagram.

∇f =

(
x√

x2 + y2
,

y√
x2 + y2

)
, ∇g = (2x,−1)

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

(5) Compute
∫
C f(x, y, z)ds for the following curves and functions.

(a) C1 : r(t) = 〈30 cos3 t, 30 sin3 t〉 for 0 ≤ t ≤ π/2 and f(x, y) = 1 + y/3.

Solution. First, ds = |r′(t)|dt =
√

(−90 cos2 t sin t)2 + (90 sin2 t cos t)2dt = 90 cos t sin tdt.
Now we are in a position to compute the line integral.
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∫

C
(1 + y/3)ds =

∫ π/2

0
(1 + 10 sin3 t)90 cos t sin tdt =

∫ π/2

0
(90 sin t + 900 sin4 t) cos tdt

=

∫ 1

u=0
(90u + 900u4)du, where u = sin t

= [45u2 + 180u5]10 = 225

(b) C2 : r(t) = 〈t2/2, t3/3〉 for 0 ≤ t ≤ 1 and f(x, y) = x2 + y2.

Solution. Again we start by computing ds = |r′(t)|dt = t
√

1 + t2dt. Then

∫

C
(x2 + y2)ds =

∫ 1

0
((t2/2)2 + (t3/3)2)t

√
1 + t2dt =

1

4

∫ 1

0
t4
√

1 + t2(tdt) +
1

9

∫ 1

0
t6
√

1 + t2(tdt)

=
1

8

∫ 2

u=1
(u − 1)2

√
udu +

1

18

∫ 2

u=1
(u − 1)3

√
udu, where u = 1 + t2

=
1

8

∫ 2

1
(u5/2 − 2u3/2 + u1/2)du +

1

18

∫ 2

1
(u7/2 − 3u5/2 + 3u3/2 − u1/2)du

=

[
u7/2

28
− u5/2

10
+

u3/2

12
+

u9/2

81
− u7/2

21
+

u5/2

15
− u3/2

27

]2

1

=

[
u9/2

81
− u7/2

84
− u5/2

30
+

5u3/2

108

]2

1

= (29/2/81 − 27/2/84 − 25/2/30 + 5 · 23/2/108) − (1/81 − 1/84 − 1/30 + 5/108)

(c) C3 : r(t) = 〈1, 2, t2〉 for 0 ≤ t ≤ 1 and f(x, y, z) = e
√

z.
Solution.

∫

C
e
√

zds =

∫ 1

0
et
√

02 + 02 + (2t)2dt =

∫ 1

0
2tetdt = [2tet − 2et]10 = 2

Note that we had to integrate by parts to anti-differentiate 2tet. (You let u = 2t and
dv = et.)

(6) Determine whether or not the following vector fields are conservative. In the cases where
F is conservative, find a function ϕ such that F(x, y, z) = ∇ϕ(x, y, z).

(a) F = (2xy + z2)i + (x2 + 2yz)j + (y2 + 2xz)k.
Solution. We first test to determine whether or not F might be conservative. Letting

F1 = 2xy + z2, F2 = x2 + 2yz, and F3 = y2 + 2xy (as usual), it is easy to verify that
∂F1/∂y = ∂F2/∂x, ∂F1/∂z = ∂F3/∂x, and ∂F2/∂z = ∂F3/∂y. There are many ways to
find a function ϕ(x, y, z) such that ∇ϕ = F, which is what we need to find. Here is one
method. We will take antiderivatives of F1 with respect to x, F2 with respect to y, and F3

with respect to z respectively and then compare the results.

ϕ(x, y, z) =

∫
(2xy + z2)dx = x2y + xz2 + C1(y, z)

ϕ(x, y, z) =

∫
(x2 + 2yz)dy = x2y + y2z + C2(x, z)

ϕ(x, y, z) =

∫
(y2 + 2xz)dz = y2z + xz2 + C3(x, y)
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It is very important that C1(y, z) is function of y and z and not just a constant, since we
are “undoing” a partial derivative where we considered y and z as constants (similarly for
C2(x, z) and C3(x, y)). If we examine the three versions of ϕ(x, y, z) we see that each version
has at least one term in common. Therefore, we might try ϕ(x, y, z) = x2y + y2z + xz2,
which turns out to work in this case.

(b) F = (ln(xy))i + (x
y )j + (y)k.

Solution. Note that F is only defined for x, y > 0 or x, y < 0 and F1 = ln(xy), F2 = x/y,
and F3 = y have continuous partials in these regions of the plane. Further, if F = ∇ϕ,
and hence F is conservative, then the mixed second partials of ϕ must be equal. But since
∂F2/∂z = 0 and ∂F3/∂y = 1, no such ϕ could exist with ∇ϕ = (ln(xy))i + (x

y )j + (y)k.

c) F = (ex cos y)i + (−ex sin y)j + (2z)k.
Solution. By inspection, it is easy to see that ϕ(x, y, z) = z2 + ex cos y is a potential

function for F. Otherwise, one could use a method similar to (a).
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