Math 263 Assignment 7
 SOLUTIONS

Problems to turn in:

(1) In each case sketch the region and then compute the volume of the solid region.
(a) The "ice-cream cone" region which is bounded above by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution. In spherical coordinates,

$$
\begin{aligned}
V & \left.=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\pi / 4} \sin \phi \rho^{3} / 3\right]_{0}^{a} d \phi \\
& =2 \pi(-\cos \phi)]_{0}^{\pi / 4} a^{3} / 3=\frac{2 \pi a^{3}}{3}(-\cos \pi / 4+\cos 0)=\frac{\pi a^{3}(2-\sqrt{2})}{3}
\end{aligned}
$$

or in cylindrical coordinates,

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{a / \sqrt{2}} \int_{r}^{\sqrt{a^{2}-r^{2}}} r d z d r d \theta=2 \pi \int_{0}^{a / \sqrt{2}}\left(r \sqrt{a^{2}-r^{2}}-r^{2}\right) d r \\
& =2 \pi\left[\frac{-\left(a^{2}-r^{2}\right)^{3 / 2}-r^{3}}{3}\right]_{0}^{a / \sqrt{2}}=2 \pi \frac{-\left(a^{2}-a^{2} / 2\right)^{3 / 2}+\left(a^{2}-0^{2}\right)^{3 / 2}-(a / \sqrt{2})^{3}+(0)^{3}}{3} \\
& =2 \pi\left(\frac{a^{3}-2 a^{3} / 2 \sqrt{2}}{3}\right)=\frac{\pi a^{3}(2-\sqrt{2})}{3} .
\end{aligned}
$$

(b) The region bounded by $z=x^{2}+3 y^{2}$ and $z=4-y^{2}$.

Solution. The parabolic cylinder $z=4-y^{2}$ comprises the top of the surface (considered in terms of z) and the paraboloid $z=x^{2}+3 y^{2}$ is the bottom surface in terms of z. To determine the region of the $x y$-plane which the region bounded by these two surfaces lies over, we intersect the two surfaces, in this case we can set them equal to each other. We see that $x^{2}+3 y^{2}=4-y^{2}$ if and only if $x^{2}+4 y^{2}=4$ if and only if $(x / 2)^{2}+y^{2}=1$. We will set up and compute the integral of this volume in rectangular coordinates (using a table of integrals to compute the anti-derivative $\left.\int\left(4-x^{2}\right)^{3 / 2} d x\right)$.

$$
\begin{aligned}
V & =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2} \int_{x^{2}+3 y^{2}}^{4-y^{2}} d z d y d x=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2}\left(4-x^{2}-4 y^{2}\right) d y d x \\
& =\int_{-2}^{2}\left[\left(4-x^{2}\right) y-(4 / 3) y^{3}\right]_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2} d x=2 \int_{-2}^{2}\left(\frac{\left(4-x^{2}\right)^{3 / 2}}{2}-\frac{\left(4-x^{2}\right)^{3 / 2}}{6}\right) d x \\
& \left.=\frac{2}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x=\frac{2}{3}\left[\frac{x}{8}\left(5 \cdot 2^{2}-2 x^{2}\right) \sqrt{4-x^{2}}+\frac{3 \cdot 2^{4}}{8} \sin ^{-1}(x / 2)\right)\right]_{-2}^{2} \\
& =4\left(\sin ^{-1}(1)-\sin ^{-1}(-1)\right)=4 \pi
\end{aligned}
$$

Another way to compute this integral would be to make a substitution $x=2 u$, so $d x=2 d u$ and we would be integrate over a circle of radius 1 in (u, y), which we will call \widetilde{R} whereas the ellipse will be called R. This makes everything much simpler. Lets see what happens.

$$
\begin{aligned}
V & =\iint_{R}\left(\int_{x^{2}+3 y^{2}}^{4-y^{2}} d z\right) d A=\iint_{R}\left(4-x^{2}-4 y^{2}\right) d x d y=\iint_{\widetilde{R}}\left(4-4 u^{2}-4 y^{2}\right) 2 d u d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right) 2 r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(8 r-8 r^{3}\right) d r=2 \pi\left[4 r^{2}-2 r^{4}\right]_{0}^{1}=2 \pi(4-2)=4 \pi
\end{aligned}
$$

(c) A sphere with a cylindrical hole bored through its centre. Specifically, the region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$.

Solution. A sphere of radius 3 has volume $V_{S}=36 \pi$. Let V_{C} denote the volume inside the given sphere and the given cylinder simultaneously. The the volume we want, $V=V_{S}-V_{C}$. Let's compute V_{C} using cylindrical coordinates.

$$
\begin{aligned}
V_{C} & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{-\left(9-r^{2}\right)^{1 / 2}}^{\left(9-r^{2}\right)^{1 / 2}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2}\left(9-r^{2}\right)^{1 / 2} 2 r d r d \theta \\
& =2 \pi\left[\frac{-2}{3}\left(9-r^{2}\right)^{3 / 2}\right]_{0}^{2}=\frac{4 \pi}{3}\left(9^{3 / 2}-5^{3 / 2}\right)=36 \pi-\frac{4 \pi 5^{3 / 2}}{3}
\end{aligned}
$$

hence $V=V_{S}-V_{C}=\frac{4 \pi 5^{3 / 2}}{3}$.
(2) Switch these integrals to spherical coordinates and compute:

Solution. I_{1} is an integral over the top half of a solid sphere of radius 3 , centred at the origin.

$$
\begin{aligned}
I_{1} & =\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \\
& =\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{3}[\rho \cos \phi] \sqrt{\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left(\int_{0}^{\pi / 2} \sin \phi \cos \phi d \phi\right)\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{3} \rho^{4} d \rho\right) \\
& =\left[\frac{1}{2} \sin ^{2} \phi\right]_{0}^{\pi / 2}(2 \pi)\left(\frac{3^{5}}{5}\right)=\frac{243 \pi}{5}
\end{aligned}
$$

I_{2} is a solid region contained within $x>0, y>0, z>0$. The solid is above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=18$. To check this, note that the cone meets the sphere at the height where $z^{2}+z^{2}=18, z=3$, and the ring where they intersect is $x^{2}+y^{2}=9$. The angle of the point of the bottom of the cone is $\phi=\pi / 4$. Putting this together, we have

$$
\begin{aligned}
I_{2} & =\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x \\
& =\int_{\phi=0}^{\pi / 4} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{\sqrt{18}}\left[\rho^{2}\right] \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left(\int_{\phi=0}^{\pi / 4} \sin \phi d \phi\right)\left(\int_{\theta=0}^{\pi / 2} d \theta\right)\left(\int_{\rho=0}^{\sqrt{18}} \rho^{4} d \rho\right) \\
& =[-\cos \phi]_{0}^{\pi / 4}\left(\frac{\pi}{2}\right)\left(\frac{(3 \sqrt{2})^{5}}{5}\right)=\frac{486 \pi}{5}(\sqrt{2}-1)
\end{aligned}
$$

(3) Calculate the moment of inertia of a circular pipe of outer radius a, inner radius b, length L and uniform density R, rotating about its centre axis. From your answer, let $b \rightarrow 0$ and derive the formula for a solid cylinder too.

Solution. Line the cylinder up along the z-direction and then the integral we need is easy to do in cylindrical coordinates:

$$
\iiint\left(x^{2}+y^{2}\right) R d V=R \int_{0}^{2 \pi} \int_{0}^{L} \int_{b}^{a} r^{2} r d r d z d \theta=\frac{2}{5} \pi L R\left(a^{4}-b^{4}\right) .
$$

Letting $b \rightarrow 0$, we obtain the moment of inertia of a solid cylinder, $(2 / 5) \pi L R a^{4}$.
(4) Find the gradient vector field of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and $g(x, y)=x^{2}-y$. In each case, plot the gradient vector field and the contour plot of the function, on the same diagram.

$$
\nabla f=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right), \quad \nabla g=(2 x,-1)
$$

(5) Compute $\int_{C} f(x, y, z) d s$ for the following curves and functions.
(a) $C_{1}: \mathbf{r}(t)=\left\langle 30 \cos ^{3} t, 30 \sin ^{3} t\right\rangle$ for $0 \leq t \leq \pi / 2$ and $f(x, y)=1+y / 3$.

Solution. First, $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{\left(-90 \cos ^{2} t \sin t\right)^{2}+\left(90 \sin ^{2} t \cos t\right)^{2}} d t=90 \cos t \sin t d t$.
Now we are in a position to compute the line integral.

$$
\begin{aligned}
\int_{C}(1+y / 3) d s & =\int_{0}^{\pi / 2}\left(1+10 \sin ^{3} t\right) 90 \cos t \sin t d t=\int_{0}^{\pi / 2}\left(90 \sin t+900 \sin ^{4} t\right) \cos t d t \\
& =\int_{u=0}^{1}\left(90 u+900 u^{4}\right) d u, \text { where } u=\sin t \\
& =\left[45 u^{2}+180 u^{5}\right]_{0}^{1}=225
\end{aligned}
$$

(b) $C_{2}: \mathbf{r}(t)=\left\langle t^{2} / 2, t^{3} / 3\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y)=x^{2}+y^{2}$.

Solution. Again we start by computing $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=t \sqrt{1+t^{2}} d t$. Then

$$
\begin{aligned}
\int_{C}\left(x^{2}+y^{2}\right) d s & =\int_{0}^{1}\left(\left(t^{2} / 2\right)^{2}+\left(t^{3} / 3\right)^{2}\right) t \sqrt{1+t^{2}} d t=\frac{1}{4} \int_{0}^{1} t^{4} \sqrt{1+t^{2}}(t d t)+\frac{1}{9} \int_{0}^{1} t^{6} \sqrt{1+t^{2}}(t d t) \\
& =\frac{1}{8} \int_{u=1}^{2}(u-1)^{2} \sqrt{u} d u+\frac{1}{18} \int_{u=1}^{2}(u-1)^{3} \sqrt{u} d u, \text { where } u=1+t^{2} \\
& =\frac{1}{8} \int_{1}^{2}\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u+\frac{1}{18} \int_{1}^{2}\left(u^{7 / 2}-3 u^{5 / 2}+3 u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\left[\frac{u^{7 / 2}}{28}-\frac{u^{5 / 2}}{10}+\frac{u^{3 / 2}}{12}+\frac{u^{9 / 2}}{81}-\frac{u^{7 / 2}}{21}+\frac{u^{5 / 2}}{15}-\frac{u^{3 / 2}}{27}\right]_{1}^{2} \\
& =\left[\frac{u^{9 / 2}}{81}-\frac{u^{7 / 2}}{84}-\frac{u^{5 / 2}}{30}+\frac{5 u^{3 / 2}}{108}\right]_{1}^{2} \\
& =\left(2^{9 / 2} / 81-2^{7 / 2} / 84-2^{5 / 2} / 30+5 \cdot 2^{3 / 2} / 108\right)-(1 / 81-1 / 84-1 / 30+5 / 108)
\end{aligned}
$$

(c) $C_{3}: \mathbf{r}(t)=\left\langle 1,2, t^{2}\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y, z)=e^{\sqrt{z}}$.

Solution.

$$
\int_{C} e^{\sqrt{z}} d s=\int_{0}^{1} e^{t} \sqrt{0^{2}+0^{2}+(2 t)^{2}} d t=\int_{0}^{1} 2 t e^{t} d t=\left[2 t e^{t}-2 e^{t}\right]_{0}^{1}=2
$$

Note that we had to integrate by parts to anti-differentiate $2 t e^{t}$. (You let $u=2 t$ and $d v=e^{t}$.)
(6) Determine whether or not the following vector fields are conservative. In the cases where \mathbf{F} is conservative, find a function φ such that $\mathbf{F}(x, y, z)=\nabla \varphi(x, y, z)$.
(a) $\mathbf{F}=\left(2 x y+z^{2}\right) \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+\left(y^{2}+2 x z\right) \mathbf{k}$.

Solution. We first test to determine whether or not \mathbf{F} might be conservative. Letting $F_{1}=2 x y+z^{2}, F_{2}=x^{2}+2 y z$, and $F_{3}=y^{2}+2 x y$ (as usual), it is easy to verify that $\partial F_{1} / \partial y=\partial F_{2} / \partial x, \partial F_{1} / \partial z=\partial F_{3} / \partial x$, and $\partial F_{2} / \partial z=\partial F_{3} / \partial y$. There are many ways to find a function $\varphi(x, y, z)$ such that $\nabla \varphi=\mathbf{F}$, which is what we need to find. Here is one method. We will take antiderivatives of F_{1} with respect to x, F_{2} with respect to y, and F_{3} with respect to z respectively and then compare the results.

$$
\begin{gathered}
\varphi(x, y, z)=\int\left(2 x y+z^{2}\right) d x=x^{2} y+x z^{2}+C_{1}(y, z) \\
\varphi(x, y, z)=\int\left(x^{2}+2 y z\right) d y=x^{2} y+y^{2} z+C_{2}(x, z) \\
\varphi(x, y, z)=\int\left(y^{2}+2 x z\right) d z=y^{2} z+x z^{2}+C_{3}(x, y) \\
4
\end{gathered}
$$

It is very important that $C_{1}(y, z)$ is function of y and z and not just a constant, since we are "undoing" a partial derivative where we considered y and z as constants (similarly for $C_{2}(x, z)$ and $\left.C_{3}(x, y)\right)$. If we examine the three versions of $\varphi(x, y, z)$ we see that each version has at least one term in common. Therefore, we might try $\varphi(x, y, z)=x^{2} y+y^{2} z+x z^{2}$, which turns out to work in this case.
(b) $\mathbf{F}=(\ln (x y)) \mathbf{i}+\left(\frac{x}{y}\right) \mathbf{j}+(y) \mathbf{k}$.

Solution. Note that \mathbf{F} is only defined for $x, y>0$ or $x, y<0$ and $F_{1}=\ln (x y), F_{2}=x / y$, and $F_{3}=y$ have continuous partials in these regions of the plane. Further, if $\mathbf{F}=\nabla \varphi$, and hence \mathbf{F} is conservative, then the mixed second partials of φ must be equal. But since $\partial F_{2} / \partial z=0$ and $\partial F_{3} / \partial y=1$, no such φ could exist with $\nabla \varphi=(\ln (x y)) \mathbf{i}+\left(\frac{x}{y}\right) \mathbf{j}+(y) \mathbf{k}$.
c) $\mathbf{F}=\left(e^{x} \cos y\right) \mathbf{i}+\left(-e^{x} \sin y\right) \mathbf{j}+(2 z) \mathbf{k}$.

Solution. By inspection, it is easy to see that $\varphi(x, y, z)=z^{2}+e^{x} \cos y$ is a potential function for \mathbf{F}. Otherwise, one could use a method similar to (a).

