Math 263 Assignment 3

Due September 26
Problems from the text (do NOT turn in these problems):
(16.7) 9-12, 17-28. (16.8) 7-14, 21-30, (17.1) 5, 7, 8, 15-18, 31, (17.2) 4-6, 17-22.

Problems to turn in:

1. In each case sketch the region and then compute the volume of the solid region.
(a) The "ice-cream cone" region which is bounded above by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) The region bounded by $z=x^{2}+3 y^{2}$ and $z=4-y^{2}$.
(c) A sphere with a cylindrical hole bored through its centre. Specifically, the region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$.
2. Switch these integrals to spherical coordinates and compute:

$$
\begin{aligned}
I_{1} & =\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \\
I_{2} & =\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
\end{aligned}
$$

3. Calculate the moment of inertia of a circular pipe of outer radius a, inner radius b, length L and uniform density R, rotating about its centre axis. From your answer, let $b \rightarrow 0$ and derive the formula for a solid cylinder too.
4. Find the gradient vector field of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and $g(x, y)=x^{2}-y$. In each case, plot the gradient vector field and the contour plot of the function, on the same diagram.
5. Compute $\int_{C} f(x, y, z) d s$ for the following curves and functions.
(a) $C_{1}: \mathbf{r}(t)=\left\langle 30 \cos ^{3} t, 30 \sin ^{3} t\right\rangle$ for $0 \leq t \leq \pi / 2$ and $f(x, y)=1+y / 3$.
(b) $C_{2}: \mathbf{r}(t)=\left\langle t^{2} / 2, t^{3} / 3\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y)=x^{2}+y^{2}$.
(c) $C_{3}: \mathbf{r}(t)=\left\langle 1,2, t^{2}\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y, z)=e^{\sqrt{z}}$.
6. Determine whether or not the following vector fields are conservative. In the cases where \mathbf{F} is conservative, find a function φ such that $\mathbf{F}(x, y, z)=\nabla \varphi(x, y, z)$.
(a) $\mathbf{F}=\left(2 x y+z^{2}\right) \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+\left(y^{2}+2 x z\right) \mathbf{k}$.
(b) $\mathbf{F}=(\ln (x y)) \mathbf{i}+\left(\frac{x}{y}\right) \mathbf{j}+(y) \mathbf{k}$.
c) $\mathbf{F}=\left(e^{x} \cos y\right) \mathbf{i}+\left(-e^{x} \sin y\right) \mathbf{j}+(2 z) \mathbf{k}$.
