Math 263 Assignment 6

Due October 24
\square Problems from the text (do NOT turn in these problems):

- Section 16.4: 1-34.
- Section 16.5 : 3-20, 28, 30, 32.
- Section 16.6: 3-22, 27-44, 49, 50.

■ Problems to turn in:

1) Find the volume of the solid bounded by the surfaces $z=3 x^{2}+3 y^{2}$ and $z=4-x^{2}-y^{2}$.
2) Sketch the region enclosed by the curve $r=b+a \cos \theta$ and compute its area. Here a and b are positive constants, $b>a$.
3) A lamina occupies the region inside the circle $x^{2}+y^{2}=2 y$ but outside the circle $x^{2}+y^{2}=1$. Find the center of mass if the density at any point is inversely poportional to its distance from the origin.
4) Evaluate the triple integral

$$
\iiint_{E} z d V
$$

where E is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x$ and $z=0$ in the first octant.
5) Find the volume of the solid bounded by the cylinder $y=x^{2}$ and the planes $z=0, z=4$ and $y=9$.
6) Sketch the solid whose volume is given by the iterated integral

$$
\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y
$$

7) Rewrite the integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x
$$

as an equivalent iterated integral in five other orders.

