Math 263 Assignment 6 Solutions

Problem 1. Find the volume of the solid bounded by the surfaces $z=3 x^{2}+3 y^{2}$ and $z=4-x^{2}-y^{2}$.

Solution. The two paraboloids intersect when $3 x^{2}+3 y^{2}=4-x^{2}-y^{2}$ or $x^{2}+y^{2}=1$. Wrting down the given volume first in Cartesian coordinates and then converting into polar form we find that

$$
\begin{aligned}
V & =\iint_{x^{2}+y^{2} \leq 1}\left[\left(4-x^{2}-y^{2}\right)-\left(3 x^{2}+3 y^{2}\right)\right] d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 4\left(1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(4 r-4 r^{3}\right) d r=2 \pi .
\end{aligned}
$$

Problem 2. Sketch the region enclosed by the curve $r=b+a \cos \theta$ and compute its area. Here a and b are positive constants, $b>a$.

Solution. The curve is a cardioid symmetric about the x-axis. The area enclosed by it is

$$
\begin{aligned}
A & =2 \int_{\theta=0}^{\pi} \int_{r=0}^{b+a \cos \theta} r d r d \theta \\
& =\int_{0}^{\pi}(b+a \cos \theta)^{2} d \theta \\
& =\int_{0}^{\pi}\left[b^{2}+\frac{a^{2}}{2}(1+\cos (2 \theta))+2 a b \cos \theta\right] d \theta \\
& =\left(b^{2}+\frac{a^{2}}{2}\right) \pi
\end{aligned}
$$

Problem 3. A lamina occupies the region inside the circle $x^{2}+y^{2}=2 y$ but outside the circle $x^{2}+y^{2}=1$. Find the center of mass if the density at any point is inversely poportional to its distance from the origin.

Solution. The circles $x^{2}+y^{2}=2 y$ and $x^{2}+y^{2}=1$ may be written in polar coordinates as $r=2 \sin \theta$ and $r=1$ respectively. They intersect at two points, where $\sin \theta=\frac{1}{2}$, so that $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$ at these points. Further the density function is $\rho(x, y)=k / \sqrt{x^{2}+y^{2}}=k / r$,
where k is the constant of proportionality. Therefore

$$
\begin{aligned}
\operatorname{mass}=m & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \int_{1}^{2 \sin \theta} \frac{k}{r} r d r d \theta \\
& =k \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(2 \sin \theta-1) d \theta \\
& =2 k\left(\sqrt{3}-\frac{\pi}{3}\right)
\end{aligned}
$$

By symmetry of the domains and the function $f(x)=x$, we know that $M_{y}=0$, and

$$
\begin{aligned}
M_{x} & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \int_{1}^{2 \sin \theta} k r \sin \theta d r d \theta \\
& =\frac{k}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}\left(4 \sin ^{3} \theta-\sin \theta\right) d \theta \\
& =\sqrt{3} k .
\end{aligned}
$$

Hence $(\bar{x}, \bar{y})=\left(0, \frac{3 \sqrt{3}}{2(3 \sqrt{3}-\pi)}\right)$.
Problem 4. Evaluate the triple integral

$$
\iiint_{E} z d V
$$

where E is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x$ and $z=0$ in the first octant.

Solution.

$$
\begin{aligned}
\iiint_{E} z d V & =\int_{0}^{1} \int_{3 x}^{3} \int_{0}^{\sqrt{9-y^{2}}} z d z d y d x \\
& =\int_{0}^{1} \int_{3 x}^{3} \frac{1}{2}\left(9-y^{2}\right) d y d x \\
& =\int_{0}^{1}\left[\frac{9 y}{2}-\frac{y^{3}}{6}\right]_{y=3 x}^{y=3} \\
& =\int_{0}^{1}\left[9-\frac{27}{2} x+\frac{9}{2} x^{3}\right] d x=\frac{27}{8}
\end{aligned}
$$

Problem 5. Find the volume of the solid bounded by the cylinder $y=x^{2}$ and the planes $z=0, z=4$ and $y=9$.

Solution.

$$
\begin{aligned}
V & =\iiint_{E} d V=\int_{-3}^{3} \int_{x^{2}}^{9} \int_{0}^{4} d z d y d x \\
& =4 \int_{-3}^{3} \int_{x^{2}}^{9} d y d x \\
& =4 \int_{-3}^{3}\left(9-x^{2}\right) d x \\
& =144
\end{aligned}
$$

Problem 6. Sketch the solid whose volume is given by the iterated integral

$$
\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y
$$

Solution. The triple integral is the volume of $E=\{(x, y, z): 0 \leq y \leq 2,0 \leq z \leq 2-y, 0 \leq$ $\left.x \leq 4-y^{2}\right\}$, the solid bounded by the three coordinate planes, the plane $z=2-y$, and the cylindrical surface $x=4-y^{2}$.

Problem 7. Rewrite the integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x
$$

as an equivalent iterated integral in five other orders.
Solution. The projection of E onto the $x y$ plane is the right triangle bounded by the coordinate axes and the straight line $x+y=1$. On the other hand, the projection onto the $x z$ plane is the region bounded by the coordinate axes and the parabola $z=1-x^{2}$. Therefore the given iterated integral may also be written as

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x & =\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x, y, z) d y d x d z \\
& =\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x, y, z) d z d x d y \\
& =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d z d y d x
\end{aligned}
$$

Now the surface $z=1-x^{2}$ intersects the plane $y=1-x$ in a curve whose projection in the $y z$-plane is $z=1-(1-y)^{2}$ or $z=2 y-y^{2}$. So we must split up the projection of E on
the $y z$ plane (which is the unit square) into two regions, whose boundary is the curve above. The given integral is therefore also equal to

$$
\begin{aligned}
& {\left[\int_{0}^{1} \int_{0}^{1-\sqrt{1-z}} \int_{0}^{\sqrt{1-z}}+\int_{0}^{1} \int_{1-\sqrt{1-z}}^{1} \int_{0}^{1-y}\right] f(x, y, z) d x d y d z } \\
= & {\left[\int_{0}^{1} \int_{0}^{2 y-y^{2}} \int_{0}^{1-y}+\int_{0}^{1} \int_{2 y-y^{2}}^{1} \int_{0}^{\sqrt{1-z}}\right] f(x, y, z) d x d z d y . }
\end{aligned}
$$

