Math 263 Assignment 6 Solutions

Problem 1. Find the volume of the solid bounded by the surfaces z = 322 + 3y? and

z=4— 2% — %

Solution. The two paraboloids intersect when 322 + 3y* = 4 — 2? — ¢* or 2% + 3*> = 1.

Wrting down the given volume first in Cartesian coordinates and then converting into polar
form we find that
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Problem 2. Sketch the region enclosed by the curve r = b + acosf and compute its
area. Here a and b are positive constants, b > a.
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Solution. The curve is a cardioid symmetric about the z-axis. The area enclosed by it is
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Problem 3. A lamina occupies the region inside the circle 22 + 3% = 2y but outside the
circle 22 +y? = 1. Find the center of mass if the density at any point is inversely poportional
to its distance from the origin.
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Solution. The circles 22 + y? = 2y and 2? + y? = 1 may be written in polar coordinates as
r = 2sinf and r = 1 respectively. They intersect at two points, where sin § = %, sothat 0 = %

and 0 = %” at these points. Further the density function is p(x,y) = k//x? +y> = k/r,



where k is the constant of proportionality. Therefore
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By symmetry of the domains and the function f(x) = x, we know that M, = 0, and
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Hence (7,7) = (0, 2(33\’/‘?_@). O
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Problem 4. Evaluate the triple integral
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where E is bounded by the cylinder 4% + 22 = 9 and the planes 2 = 0, y = 3z and z = 0 in
the first octant.

Solution.
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Problem 5. Find the volume of the solid bounded by the cylinder y = 22 and the planes
z=0,z=4and y=9.



Solution.
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Problem 6. Sketch the solid whose volume is given by the iterated integral
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Solution. The triple integral is the volume of F = {(z,9,2) : 0 <y <2, 0<2<2—y,0<
x < 4 — 1y}, the solid bounded by the three coordinate planes, the plane z = 2 — y, and the
cylindrical surface v = 4 — y2. O

Problem 7. Rewrite the integral
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as an equivalent iterated integral in five other orders.
Solution. The projection of E onto the xy plane is the right triangle bounded by the

coordinate axes and the straight line z +y = 1. On the other hand, the projection onto

the xz plane is the region bounded by the coordinate axes and the parabola z = 1 — 22

Therefore the given iterated integral may also be written as
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Now the surface z = 1 — 2 intersects the plane y = 1 — z in a curve whose projection in
the yz-plane is 2 = 1 — (1 — y)? or z = 2y — y*. So we must split up the projection of £ on



the yz plane (which is the unit square) into two regions, whose boundary is the curve above.
The given integral is therefore also equal to
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