Math 263 Assignment 5 SOLUTIONS

1. The temperature at all points in the disc $x^2 + y^2 \leq 1$ is $T(x, y) = (x + y)e^{-x^2 - y^2}$. Find the maximum and minimum temperatures on the disc.

SOLUTION:

 $T(x,y) = (x+y)e^{-x^2-y^2} \qquad T_x(x,y) = (1-2x^2-2xy)e^{-x^2-y^2} \qquad T_y(x,y) = (1-2xy-2y^2)e^{-x^2-y^2}$

First, we find the critical points

$$T_x = 0 \iff 2x(x+y) = 1$$

 $T_y = 0 \iff 2y(x+y) = 1$

As x + y may not vanish, this forces x = y and then $x = y = \pm 1/2$. So the only critical points are (1/2, 1/2) and (-1/2, -1/2).

On the boundary $x = \cos t$ and $y = \sin t$, so $T = (\cos t + \sin t)e^{-1}$. This is a periodic function and so takes its max and min at zeroes of $\frac{dT}{dt} = (-\sin t + \cos t)e^{-1}$. That is, when $\sin t = \cos t$, which forces $\sin t = \cos t = \pm \frac{1}{\sqrt{2}}$. All together, we have the following candidates for max and min

point	(1/2, 1/2)	(-1/2, -1/2)	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
value of f	$\frac{1}{\sqrt{e}} \approx 0.61$	$-\frac{1}{\sqrt{e}}$	$\frac{\sqrt{2}}{e} \approx 0.52$	$-\frac{\sqrt{2}}{e}$

The largest and smallest values of T in this table are min = $-\frac{1}{\sqrt{e}}$, max = $\frac{1}{\sqrt{e}}$.

2. Find the high and low points of the surface $z = \sqrt{x^2 + y^2}$ with (x, y) varying over the square $|x| \leq 1$, $|y| \leq 1$. Discuss the values of z_x , z_y there. Do not evaluate any derivatives in answering this question.

SOLUTION: The surface is a cone. The minimum height is at (0, 0, 0). The cone has a point there and the derivatives z_x and z_y do not exist. The maximum height is achieved when (x, y) is as far as possible from (0, 0). The highest points are at $(\pm 1, \pm 1, \sqrt{2})$. There z_x and z_y exist but are not zero. These points would not be the highest points if it were not for the restriction $|x|, |y| \leq 1$.

3. Use the method of Lagrange multipliers to find the maximum and minimum values of the function f(x, y, z) = x + y - z on the sphere $x^2 + y^2 + z^2 = 1$.

SOLUTION: Define $L(x, y, z, \lambda) = x + y - z - \lambda(x^2 + y^2 + z^2 - 1)$. Then

$$0 = L_x = 1 - 2\lambda x \implies x = \frac{1}{2\lambda}$$

$$0 = L_y = 1 - 2\lambda y \implies y = \frac{1}{2\lambda}$$

$$0 = L_z = -1 - 2\lambda x \implies z = -\frac{1}{2\lambda}$$

$$0 = L_\lambda = x^2 + y^2 + z^2 - 1 \implies 3\left(\frac{1}{2\lambda}\right)^2 - 1 = 0 \implies \lambda = \pm \frac{\sqrt{3}}{2}$$

The critical points are $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, where $f = -\sqrt{3}$ and $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$, where $f = \sqrt{3}$. So, the max is $f = \sqrt{3}$ and the min is $f = -\sqrt{3}$.

4. Find a, b and c so that the volume $4\pi abc/3$ of an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ passing through the point (1, 2, 1) is as small as possible.

SOLUTION: Define $L(a, b, c, \lambda) = \frac{4}{3}\pi abc - \lambda(\frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - 1)$. Then

$$0 = L_a = \frac{4}{3}\pi bc + \frac{2\lambda}{a^3} \implies \frac{3}{2\pi}\lambda = -a^3bc$$

$$0 = L_b = \frac{4}{3}\pi ac + \frac{8\lambda}{b^3} \implies \frac{3}{2\pi}\lambda = -\frac{1}{4}ab^3c$$

$$0 = L_c = \frac{4}{3}\pi ab + \frac{2\lambda}{c^3} \implies \frac{3}{2\pi}\lambda = -abc^3$$

$$0 = L_\lambda = \frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - 1$$

The equations $-\frac{3}{2\pi}\lambda = a^3bc = \frac{1}{4}ab^3c$ force b = 2a (since we want a, b, c > 0). The equations $-\frac{3}{2\pi}\lambda = a^3bc = abc^3$ force a = c. Hence

$$0 = \frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - 1 = \frac{3}{a^2} - 1 \implies a = c = \sqrt{3}, \quad b = 2\sqrt{3}$$

5. Find the triangle of largest area that can be inscribed in the circle $x^2 + y^2 = 1$.

SOLUTION: Inscribe the base of the triangle and choose a coordinate system in which the base is horizontal. Pick the vertex of the triangle. For a given base, the triangle has maximum height (and hence area) if the vertex is chosen to be at the "top" of the circle, as shown.

We are to maximize A = bh/2 subject to $(h-1)^2 + \left(\frac{b}{2}\right)^2 = 1$. Define

$$L(b,h,\lambda) = (1/2)bh - \lambda \left((h-1)^2 + \left(\frac{b}{2}\right)^2 - 1 \right)$$

Then

$$0 = L_b = (1/2)h - (1/2)\lambda b \implies \frac{b^2}{4} = h(h-1)$$

$$0 = L_h = (1/2)b - 2\lambda(h-1) \implies \lambda = \frac{b}{4(h-1)}$$

$$0 = L_\lambda = -(h-1)^2 - (\frac{b}{2})^2 + 1 \implies (h-1)^2 + h(h-1) = 1$$

$$\implies 2h^2 - 3h = 0$$

So h must be either 0 (which cannot give maximum area) or $h = \frac{3}{2}$ and $b = \sqrt{3}$. All three sides of the triangle have length $\sqrt{3}$, so the triangle is equilateral (surprise!).

- 6. For each of the following, evaluate the given double integral **without** using iteration. Instead, interpret the integral as an area or some other physical quantity.
 - (a) $\iint_R dx \, dy$ where R is the rectangle $-1 \le x \le 3, -4 \le y \le 1$.
 - (b) $\iint_D (x+3) dx dy$, where D is the half disc $0 \le y \le \sqrt{4-x^2}$.
 - (c) $\iint_{R} (x+y) dx dy$ where R is the rectangle $0 \le x \le a, 0 \le y \le b$.
 - (d) $\iint_R \sqrt{a^2 x^2 y^2} \, dx \, dy$ where R is the region $x^2 + y^2 \le a^2$.
 - (e) $\iint_R \sqrt{b^2 y^2} \, dx \, dy$ where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$.

SOLUTION:

- (a) $\iint_R dx \, dy$ is the area of a rectangle with sides of lengths 4 and 5. This area is $\iint_R dx \, dy = 4 \times 5 = 20$.
- (b) $\iint_D x \, dx \, dy = 0$ because x is odd under reflection about the y-axis, while the domain of integration is symmetric about the y-axis. $\iint_D 3 \, dx \, dy$ is the three times the area of a half disc of radius 2. So, $\iint_D (x+3) dx \, dy = 3 \times (1/2) \times \pi 2^2 = 6\pi$.
- (c) $\iint_R x \, dx \, dy / \iint_R dx \, dy$ is the average value of x in the rectangle R, namely $\frac{a}{2}$. Similarly, $\iint_R y \, dx \, dy / \iint_R dx \, dy$ is the average value of y in the rectangle R, namely $\frac{b}{2}$. $\iint_R dx \, dy$ is area of the rectangle R, namely ab. So, $\iint_S (x+y) dx \, dy = (1/2)ab(a+b)$.
- (d) $\iint_R \sqrt{a^2 x^2 y^2} \, dx \, dy$ is the volume of the region, V, with $0 \le z \le \sqrt{a^2 x^2 y^2}$, $x^2 + y^2 \le a^2$. This is the top half of a sphere of radius a. So, $\iint_R \sqrt{a^2 x^2 y^2} \, dx \, dy = \frac{2}{3}\pi a^3$.
- (e) e) $\iint_R \sqrt{b^2 y^2} \, dx \, dy$ is the volume of the region, V, with $0 \le z \le \sqrt{b^2 y^2}$, $0 \le x \le a$, $0 \le y \le b$. $y^2 + z^2 \le b^2$ is a cylinder of radius b centered on the x axis. $y^2 + z^2 \le b^2$, $y \ge 0$, $z \ge 0$ is one quarter of this cylinder. It has cross–sectional area $\frac{1}{4}\pi b^2$. V is the part of this quarter–cylinder with $0 \le x \le a$. It has length a and cross–sectional area $\frac{1}{4}\pi b^2$. So, $\iint_R \sqrt{b^2 y^2} \, dx \, dy = \frac{1}{4}\pi a b^2$.

7. For each iterated integral, sketch the domain of integration and evaluate:

(a)

$$I = \int_{0}^{1} \int_{y}^{1} e^{-x^{2}} dx dy$$
(b)

$$I = \int_{0}^{1} \int_{x}^{1} \frac{y^{p}}{x^{2} + y^{2}} dy dx \ (p > 0)$$
(c)

$$I = \int_{0}^{\pi/2} \int_{y}^{\pi/2} \frac{\sin x}{x} dx dy$$

SOLUTION: In each problem, the trick is to reverse the order of integration.

(a)

$$I = \int_0^1 \int_y^1 e^{-x^2} dx dy = \int_0^1 \int_0^x e^{-x^2} dy dx = \int_0^1 \left[y e^{-x^2} \right]_{y=0}^{y=x} dx$$
$$= \int_0^1 x e^{-x^2} dx = \left[-\frac{e^{-x^2}}{2} \right]_0^1 = \frac{1 - e^{-1}}{2}$$

(b)

$$I = \int_0^1 \int_x^1 \frac{y^p}{x^2 + y^2} \, dy \, dx = \int_0^1 \int_0^y \frac{y^p}{x^2 + y^2} \, dx \, dy = \int_0^1 y^p \int_0^y \frac{1}{x^2 + y^2} \, dx \, dy$$
$$= \int_0^1 y^p \left[\frac{1}{y} \tan^{-1}(x/y) \right]_{x=0}^{x=y} \, dy = \int_0^1 y^{p-1} \left(\tan^{-1}(1) - \tan^{-1}(0) \right) \, dy = \int_0^1 \frac{\pi}{4} y^{p-1} \, dy$$
$$= \frac{\pi}{4} \left[\frac{y^p}{p} \right]_0^1 = \frac{\pi}{4p}$$

(c)

$$I = \int_0^{\pi/2} \int_y^{\pi/2} \frac{\sin x}{x} \, dx \, dy = \int_0^{\pi/2} \int_0^x \frac{\sin x}{x} \, dy \, dx = \int_0^{\pi/2} \sin x \, dx = 1$$