Math 263 Assignment 5 SOLUTIONS

1. The temperature at all points in the disc $x^{2}+y^{2} \leq 1$ is $T(x, y)=(x+y) e^{-x^{2}-y^{2}}$. Find the maximum and minimum temperatures on the disc.

SOLUTION:

$T(x, y)=(x+y) e^{-x^{2}-y^{2}} \quad T_{x}(x, y)=\left(1-2 x^{2}-2 x y\right) e^{-x^{2}-y^{2}} \quad T_{y}(x, y)=\left(1-2 x y-2 y^{2}\right) e^{-x^{2}-y^{2}}$
First, we find the critical points

$$
\begin{aligned}
& T_{x}=0 \quad \Longleftrightarrow \quad 2 x(x+y)=1 \\
& T_{y}=0 \quad \Longleftrightarrow \quad 2 y(x+y)=1
\end{aligned}
$$

As $x+y$ may not vanish, this forces $x=y$ and then $x=y= \pm 1 / 2$. So the only critical points are $(1 / 2,1 / 2)$ and $(-1 / 2,-1 / 2)$.
On the boundary $x=\cos t$ and $y=\sin t$, so $T=(\cos t+\sin t) e^{-1}$. This is a periodic function and so takes its max and min at zeroes of $\frac{d T}{d t}=(-\sin t+\cos t) e^{-1}$. That is, when $\sin t=\cos t$, which forces $\sin t=\cos t= \pm \frac{1}{\sqrt{2}}$. All together, we have the following candidates for max and min

point	$(1 / 2,1 / 2)$	$(-1 / 2,-1 / 2)$	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
value of f	$\frac{1}{\sqrt{e}} \approx 0.61$	$-\frac{1}{\sqrt{e}}$	$\frac{\sqrt{2}}{e} \approx 0.52$	$-\frac{\sqrt{2}}{e}$

The largest and smallest values of T in this table are $\min =-\frac{1}{\sqrt{e}}, \max =\frac{1}{\sqrt{e}}$.
2. Find the high and low points of the surface $z=\sqrt{x^{2}+y^{2}}$ with (x, y) varying over the square $|x| \leq 1,|y| \leq 1$. Discuss the values of z_{x}, z_{y} there. Do not evaluate any derivatives in answering this question.

SOLUTION: The surface is a cone. The minimum height is at $(0,0,0)$. The cone has a point there and the derivatives z_{x} and z_{y} do not exist. The maximum height is achieved when (x, y) is as far as possible from $(0,0)$. The highest points are at $(\pm 1, \pm 1, \sqrt{2})$. There z_{x} and z_{y} exist but are not zero. These points would not be the highest points if it were not for the restriction $|x|,|y| \leq 1$.
3. Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y, z)=x+y-z$ on the sphere $x^{2}+y^{2}+z^{2}=1$.

SOLUTION: Define $L(x, y, z, \lambda)=x+y-z-\lambda\left(x^{2}+y^{2}+z^{2}-1\right)$. Then

$$
\begin{aligned}
& 0=L_{x}=1-2 \lambda x \quad \Longrightarrow x=\frac{1}{2 \lambda} \\
& 0=L_{y}=1-2 \lambda y \quad \Longrightarrow y=\frac{1}{2 \lambda} \\
& 0=L_{z}=-1-2 \lambda x \quad \Longrightarrow z=-\frac{1}{2 \lambda} \\
& 0=L_{\lambda}=x^{2}+y^{2}+z^{2}-1 \quad \Longrightarrow 3\left(\frac{1}{2 \lambda}\right)^{2}-1=0 \quad \Longrightarrow \lambda= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

The critical points are $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, where $f=-\sqrt{3}$ and $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$, where $f=\sqrt{3}$. So, the max is $f=\sqrt{3}$ and the \min is $f=-\sqrt{3}$.
4. Find a, b and c so that the volume $4 \pi a b c / 3$ of an ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ passing through the point $(1,2,1)$ is as small as possible.

SOLUTION: Define $L(a, b, c, \lambda)=\frac{4}{3} \pi a b c-\lambda\left(\frac{1}{a^{2}}+\frac{4}{b^{2}}+\frac{1}{c^{2}}-1\right)$. Then

$$
\begin{aligned}
& 0=L_{a}=\frac{4}{3} \pi b c+\frac{2 \lambda}{a^{3}} \quad \Longrightarrow \frac{3}{2 \pi} \lambda=-a^{3} b c \\
& 0=L_{b}=\frac{4}{3} \pi a c+\frac{8 \lambda}{b^{3}} \quad \Longrightarrow \frac{3}{2 \pi} \lambda=-\frac{1}{4} a b^{3} c \\
& 0=L_{c}=\frac{4}{3} \pi a b+\frac{2 \lambda}{c^{3}} \quad \Longrightarrow \frac{3}{2 \pi} \lambda=-a b c^{3} \\
& 0=L_{\lambda}=\frac{1}{a^{2}}+\frac{4}{b^{2}}+\frac{1}{c^{2}}-1
\end{aligned}
$$

The equations $-\frac{3}{2 \pi} \lambda=a^{3} b c=\frac{1}{4} a b^{3} c$ force $b=2 a$ (since we want $a, b, c>0$). The equations $-\frac{3}{2 \pi} \lambda=a^{3} b c=a b c^{3}$ force $a=c$. Hence

$$
0=\frac{1}{a^{2}}+\frac{4}{b^{2}}+\frac{1}{c^{2}}-1=\frac{3}{a^{2}}-1 \Longrightarrow a=c=\sqrt{3}, \quad b=2 \sqrt{3}
$$

5. Find the triangle of largest area that can be inscribed in the circle $x^{2}+y^{2}=1$.

SOLUTION: Inscribe the base of the triangle and choose a coordinate system in which the base is horizontal. Pick the vertex of the triangle. For a given base, the triangle has maximum height (and hence area) if the vertex is chosen to be at the "top" of the circle, as shown.

We are to mazimize $A=b h / 2$ subject to $(h-1)^{2}+\left(\frac{b}{2}\right)^{2}=1$. Define

$$
L(b, h, \lambda)=(1 / 2) b h-\lambda\left((h-1)^{2}+\left(\frac{b}{2}\right)^{2}-1\right)
$$

Then

$$
\begin{aligned}
0=L_{b}= & (1 / 2) h-(1 / 2) \lambda b \Longrightarrow \frac{b^{2}}{4}=h(h-1) \\
0=L_{h}= & (1 / 2) b-2 \lambda(h-1) \Longrightarrow \lambda=\frac{b}{4(h-1)} \\
0=L_{\lambda}= & -(h-1)^{2}-\left(\frac{b}{2}\right)^{2}+1 \Longrightarrow(h-1)^{2}+h(h-1)=1 \\
& \Longrightarrow 2 h^{2}-3 h=0
\end{aligned}
$$

So h must be either 0 (which cannot give maximum area) or $h=\frac{3}{2}$ and $b=\sqrt{3}$. All three sides of the triangle have length $\sqrt{3}$, so the triangle is equilateral (surprise!).
6. For each of the following, evaluate the given double integral without using iteration. Instead, interpret the integral as an area or some other physical quantity.
(a) $\iint_{R} d x d y$ where R is the rectangle $-1 \leq x \leq 3,-4 \leq y \leq 1$.
(b) $\iint_{D}(x+3) d x d y$, where D is the half disc $0 \leq y \leq \sqrt{4-x^{2}}$.
(c) $\iint_{R}(x+y) d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.
(d) $\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ where R is the region $x^{2}+y^{2} \leq a^{2}$.
(e) $\iint_{R} \sqrt{b^{2}-y^{2}} d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.

SOLUTION:

(a) $\iint_{R} d x d y$ is the area of a rectangle with sides of lengths 4 and 5 . This area is $\iint_{R} d x d y=$ $4 \times 5=20$.
(b) $\iint_{D} x d x d y=0$ because x is odd under reflection about the y-axis, while the domain of integration is symmetric about the y-axis. $\iint_{D} 3 d x d y$ is the three times the area of a half disc of radius 2 . So, $\iint_{D}(x+3) d x d y=3 \times(1 / 2) \times \pi 2^{2}=6 \pi$.
(c) $\iint_{R} x d x d y / \iint_{R} d x d y$ is the average value of x in the rectangle R, namely $\frac{a}{2}$. Similarly, $\iint_{R} y d x d y / \iint_{R} d x d y$ is the average value of y in the rectangle R, namely $\frac{b}{2}$. $\iint_{R} d x d y$ is area of the rectangle R, namely $a b$. So, $\iint_{S}(x+y) d x d y=(1 / 2) a b(a+b)$.
(d) $\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ is the volume of the region, V, with $0 \leq z \leq \sqrt{a^{2}-x^{2}-y^{2}}$, $x^{2}+y^{2} \leq a^{2}$. This is the top half of a sphere of radius a. So, $\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y=$ $\frac{2}{3} \pi a^{3}$.
(e) e) $\iint_{R} \sqrt{b^{2}-y^{2}} d x d y$ is the volume of the region, V, with $0 \leq z \leq \sqrt{b^{2}-y^{2}}, 0 \leq x \leq a$, $0 \leq y \leq b . y^{2}+z^{2} \leq b^{2}$ is a cylinder of radius b centered on the x axis. $y^{2}+z^{2} \leq b^{2}, y \geq$ $0, z \geq 0$ is one quarter of this cylinder. It has cross-sectional area $\frac{1}{4} \pi b^{2}$. V is the part of this quarter-cylinder with $0 \leq x \leq a$. It has length a and cross-sectional area $\frac{1}{4} \pi b^{2}$. So, $\iint_{R} \sqrt{b^{2}-y^{2}} d x d y=\frac{1}{4} \pi a b^{2}$.
7. For each iterated integral, sketch the domain of integration and evaluate:
(a)

$$
I=\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

(b)

$$
I=\int_{0}^{1} \int_{x}^{1} \frac{y^{p}}{x^{2}+y^{2}} d y d x(p>0)
$$

(c)

$$
I=\int_{0}^{\pi / 2} \int_{y}^{\pi / 2} \frac{\sin x}{x} d x d y
$$

SOLUTION: In each problem, the trick is to reverse the order of integration.
a.

b.

C.

(a)

$$
\begin{aligned}
I=\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y= & \int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x=\int_{0}^{1}\left[y e^{-x^{2}}\right]_{y=0}^{y=x} d x \\
& =\int_{0}^{1} x e^{-x^{2}} d x=\left[-\frac{e^{-x^{2}}}{2}\right]_{0}^{1}=\frac{1-e^{-1}}{2}
\end{aligned}
$$

(b)

$$
\begin{array}{r}
I=\int_{0}^{1} \int_{x}^{1} \frac{y^{p}}{x^{2}+y^{2}} d y d x=\int_{0}^{1} \int_{0}^{y} \frac{y^{p}}{x^{2}+y^{2}} d x d y=\int_{0}^{1} y^{p} \int_{0}^{y} \frac{1}{x^{2}+y^{2}} d x d y \\
=\int_{0}^{1} y^{p}\left[\frac{1}{y} \tan ^{-1}(x / y)\right]_{x=0}^{x=y} d y=\int_{0}^{1} y^{p-1}\left(\tan ^{-1}(1)-\tan ^{-1}(0)\right) d y=\int_{0}^{1} \frac{\pi}{4} y^{p-1} d y \\
=\frac{\pi}{4}\left[\frac{y^{p}}{p}\right]_{0}^{1}=\frac{\pi}{4 p}
\end{array}
$$

(c)

$$
I=\int_{0}^{\pi / 2} \int_{y}^{\pi / 2} \frac{\sin x}{x} d x d y=\int_{0}^{\pi / 2} \int_{0}^{x} \frac{\sin x}{x} d y d x=\int_{0}^{\pi / 2} \sin x d x=1
$$

