Math 263 Assignment 5 Due October 10

Problems from the text (do NOT turn in these problems): (16.2) 3-22, 25-30; (16.3) 1-28, 37-48.

Problems to turn in:

- 1. The temperature at all points in the disc $x^2 + y^2 \leq 1$ is $T(x, y) = (x + y)e^{-x^2 y^2}$. Find the maximum and minimum temperatures on the disc.
- 2. Find the high and low points of the surface $z = \sqrt{x^2 + y^2}$ with (x, y) varying over the square $|x| \leq 1$, $|y| \leq 1$. Discuss the values of z_x , z_y there. Do not evaluate any derivatives in answering this question.
- 3. Use the method of Lagrange multipliers to find the maximum and minimum values of the function f(x, y, z) = x + y z on the sphere $x^2 + y^2 + z^2 = 1$.
- 4. Find a, b and c so that the volume $4\pi abc/3$ of an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ passing through the point (1, 2, 1) is as small as possible.
- 5. Find the triangle of largest area that can be inscribed in the circle $x^2 + y^2 = 1$.
- 6. For each of the following, evaluate the given double integral **without** using iteration. Instead, interpret the integral as an area or some other physical quantity.
 - (a) $\iint_R dx \, dy$ where R is the rectangle $-1 \le x \le 3, -4 \le y \le 1$.
 - (b) $\iint_D (x+3) dx dy$, where D is the half disc $0 \le y \le \sqrt{4-x^2}$.
 - (c) $\iint_R (x+y) dx dy$ where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$.
 - (d) $\iint_R \sqrt{a^2 x^2 y^2} \, dx \, dy$ where R is the region $x^2 + y^2 \le a^2$.
 - (e) $\iint_R \sqrt{b^2 y^2} \, dx \, dy$ where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$.

7. For each iterated integral, sketch the domain of integration and evaluate:

(a)

(b)

$$I = \int_0^1 \int_y^1 e^{-x^2} \, dx \, dy$$

$$I = \int_0^1 \int_x^1 \frac{y^p}{x^2 + y^2} \, dy dx \ (p > 0)$$

(c) $I = \int_0^{\pi/2} \int_y^{\pi/2} \frac{\sin x}{x} \, dx \, dy$