Math 263 Assignment 5

Due October 10

Problems from the text (do NOT turn in these problems):

(16.2) 3-22, 25-30; (16.3) 1-28, 37-48.

Problems to turn in:

1. The temperature at all points in the disc $x^{2}+y^{2} \leq 1$ is $T(x, y)=(x+y) e^{-x^{2}-y^{2}}$. Find the maximum and minimum temperatures on the disc.
2. Find the high and low points of the surface $z=\sqrt{x^{2}+y^{2}}$ with (x, y) varying over the square $|x| \leq 1,|y| \leq 1$. Discuss the values of z_{x}, z_{y} there. Do not evaluate any derivatives in answering this question.
3. Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y, z)=x+y-z$ on the sphere $x^{2}+y^{2}+z^{2}=1$.
4. Find a, b and c so that the volume $4 \pi a b c / 3$ of an ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ passing through the point $(1,2,1)$ is as small as possible.
5. Find the triangle of largest area that can be inscribed in the circle $x^{2}+y^{2}=1$.
6. For each of the following, evaluate the given double integral without using iteration. Instead, interpret the integral as an area or some other physical quantity.
(a) $\iint_{R} d x d y$ where R is the rectangle $-1 \leq x \leq 3,-4 \leq y \leq 1$.
(b) $\iint_{D}(x+3) d x d y$, where D is the half disc $0 \leq y \leq \sqrt{4-x^{2}}$.
(c) $\iint_{R}(x+y) d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.
(d) $\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ where R is the region $x^{2}+y^{2} \leq a^{2}$.
(e) $\iint_{R} \sqrt{b^{2}-y^{2}} d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.
7. For each iterated integral, sketch the domain of integration and evaluate:
(a)

$$
I=\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

(b)

$$
I=\int_{0}^{1} \int_{x}^{1} \frac{y^{p}}{x^{2}+y^{2}} d y d x(p>0)
$$

(c)

$$
I=\int_{0}^{\pi / 2} \int_{y}^{\pi / 2} \frac{\sin x}{x} d x d y
$$

