Math 263 Assignment 3 Solutions

1. (a) Draw a contour diagram for the function $f(x, y)=\sqrt{(x-1)^{2}+(y-2)^{2}}$. Indicate the contours $f(x, y)=1,2,3$ and 4 .
(b) Calculate $\nabla f(2,3)$ and indicate this vector on your diagram.
(c) Consider $z=f(x, y)$. Find the equation of the tangent plane to $f(x, y)$ at the point $(2,3)$.

Solution:

(a) The contours $f(x, y)=K$ are circles of radius K centred at $(1,2)$.

(b)

$$
\nabla f(x, y)=\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\binom{\frac{x-1}{\sqrt{(x-1)^{2}+(y-2)^{2}}}}{\frac{y-2}{\sqrt{(x-1)^{2}+(y-2)^{2}}}} .
$$

Therefore $\nabla f(2,3)=(1 / \sqrt{2}, 1 / \sqrt{2})$.
(c) The tangent plane is given by

$$
z=f(2,3)+\nabla f(2,3) .\binom{x-2}{y-3}=\sqrt{2}+\frac{1}{\sqrt{2}}(x-2)+\frac{1}{\sqrt{2}}(y-3) .
$$

In standard equation form, this is

$$
\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y-z=-\sqrt{2}+\frac{5}{\sqrt{2}}
$$

2. A function $z=f(x, y)$ is called harmonic if it satisfies this equation:

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

This is called Laplace's Equation. Determine whether or not the following functions are harmonic:
(a) $z=\sqrt{x^{2}+y^{2}}$
(b) $e^{-x} \sin y$
(c) $3 x^{2} y-y^{3}$

Solution:

(a) Simply differentiate twice with respect to x to get $\partial^{2} z / \partial x^{2}$ and twice with respect to y to get $\partial^{2} z / \partial y^{2}$. You will get

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{1}{\sqrt{x^{2}+y^{2}}} \neq 0
$$

so this function is not harmonic.
(b)

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=e^{-x} \sin y-e^{-x} \sin y=0
$$

so this function is harmonic.
(c)

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=6 y-6 y=0
$$

so this function is harmonic.
3. In each case, give an example of an appropriate function or show that no such fuction exists.
(a) A function $f(x, y)$ with continuous second order partial derivatives and which satisfies $\frac{\partial f}{\partial x}=6 x y^{2}$ and $\frac{\partial f}{\partial y}=8 x^{2} y$.
(b) A function $g(x, y)$ satisfying the equations $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=2 x y$.

Solution:

(a) We know that

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x} .
$$

Taking $\frac{\partial f}{\partial x}=6 x y^{2}$ and differentiating with respect to y we get

$$
\frac{\partial^{2} f}{\partial y \partial x}=12 x y
$$

Similarly, differentiating $\frac{\partial f}{\partial y}=8 x^{2} y$ with respect to x, we get

$$
\frac{\partial^{2} f}{\partial x \partial y}=16 x y
$$

Since these mixed partial derivatives are not equal, we conclude that there is no such function $f(x, y)$.
(b) If we repeat the argument from part (a), we get $\frac{\partial^{2} f}{\partial y \partial x}=2 x \neq \frac{\partial^{2} f}{\partial x \partial y}=2 y$, so again we find there is no such function $f(x, y)$.
4. Use the appropriate version of the chain rule to compute the following:
(a) $d w / d t$ at $t=3$, where $w=\ln \left(x^{2}+y^{2}+z^{2}\right), x=\cos t, y=\sin t$, and $z=4 \sqrt{t}$.
(b) $\partial z / \partial u$ and $\partial z / \partial v$, where $z=x y, x=u \cos v$, and $y=u \sin v$.

Solution:

(a)

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
& =\frac{-2 x \sin t}{x^{2}+y^{2}+z^{2}}+\frac{2 y \cos t}{x^{2}+y^{2}+z^{2}}+\frac{4 z t^{-1 / 2}}{x^{2}+y^{2}+z^{2}} \\
& =\frac{-2 \cos t \sin t+2 \sin t \cos t+16}{\cos ^{2} t+\sin ^{2} t+16 t} \\
& =\frac{16}{1+16 t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=y \cos v+x \sin v=2 u \sin v \cos v=u \sin 2 v \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=-y u \sin v+x u \cos v=u^{2}\left(\cos ^{2} v-\sin ^{2} v\right)=u^{2} \cos 2 v
\end{aligned}
$$

5. Suppose a duck is swimming around in a circle, with position given by $x=\cos t$ and $y=\sin t$. Suppose that the water temperature is given by $T=x^{2} e^{y}-x y^{3}$. Find the rate of change in temperature that the duck experiences as it passes through the point $(1 / \sqrt{2},-1 / \sqrt{2})$.

Solution: We need to compute $d T / d t$ using the chain rule:

$$
\frac{d T}{d t}=\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}=\left(2 x e^{y}-y^{3}\right)(-\sin t)+\left(x^{2} e^{y}-3 x y^{2}\right)(\cos t)
$$

To evaluate this function at the point $x=1 / \sqrt{2}, y=-1 / \sqrt{2}$, we also need to know what t is. Solving for $1 / \sqrt{2}=\cos t$ and $-1 / \sqrt{2}=\sin t$, we find that $t=7 \pi / 4$. Plugging in x, y and t into $d T / d t$, we find that

$$
\frac{d T}{d t}=-\frac{1}{2}+\left(\frac{1}{2 \sqrt{2}}+1\right) e^{-1 / \sqrt{2}}
$$

6. Compute the following using implicit differentiation:
(a) $\partial y / \partial z$ if $e^{y z}-x^{2} z \ln y=\pi$.
(b) $d y / d x$ if $F\left(x, y, x^{2}-y^{2}\right)=0$.

Solution:

(a) Partially differentiate both sides of the equation with respect to z. You have to have $y=y(x, z)$ and x is fixed:

$$
\begin{aligned}
\frac{\partial}{\partial z}\left(e^{y z}-x^{2} z \ln y\right) & =\frac{\partial}{\partial z} \pi \\
\left(z \frac{\partial y}{\partial z}+y\right) e^{y z}-\left(x^{2} \ln y+x^{2} z \frac{1}{y} \frac{\partial y}{\partial z}\right) & =0 \\
\frac{\partial y}{\partial z} & =\frac{x^{2} \ln y-y e^{y z}}{z e^{y z}-\frac{x^{2} z}{y}} .
\end{aligned}
$$

(b) We are looking for $d y / d x$ so we have to assume that $y=y(x)$. Therefore, differentiating $F(x, y, z)=0$ with respect to x, when $z=x^{2}-y^{2}$, we find

$$
\begin{aligned}
\frac{\partial}{\partial x} F\left(x, y, x^{2}-y^{2}\right) & =\frac{\partial}{\partial x} 0 \\
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d z}+\frac{\partial F}{\partial z}\left(2 x-2 y \frac{d y}{d x}\right) & =0 \\
\frac{d y}{d x} & =\frac{-\frac{\partial F}{\partial x}-2 x \frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}-2 y \frac{\partial F}{\partial z}}
\end{aligned}
$$

7. The surface plot $z=f(x, y)$ and the contour diagram are shown:

Look at the point $(2,2)$. At this point, find the sign (positive or negative) of each of the following quantities:

- $\partial f / \partial x$
- $\partial f / \partial y$
- $\partial^{2} f / \partial x^{2}$
- $\partial^{2} f / \partial y^{2}$
- $\partial^{2} f / \partial x \partial y$

Solution: The function is decreasing as you go upwards and to the right. Therefore, $\partial f / \partial x$ and $\partial f / \partial y$ are both negative at $(2,2)$. As you go through $(2,2)$ in the x-direction, the contours are getting closer together. That means that $\partial f / \partial x$ is getting more negative. Therefore, $\partial^{2} f / \partial x^{2}$ is negative. Similarly, as you go through (2,2) in the y-direction, the contours are getting closer together. That means that $\partial f / \partial y$ is also getting more negative. Therefore, $\partial^{2} f / \partial y^{2}$ is negative too.
The most difficult one, as usual, is $\partial^{2} f / \partial x \partial y$. Let's consider $\partial f / \partial y$ and see how that changes as we move through $(2,2)$ in the x-direction. A bit to the left of $(2,2), \partial f / \partial y$ is negative. A bit to the right of $(2,2), \partial f / \partial y$ is more negative. We know this because the distance between the contours is getting smaller as we move to the right. Therefore, $\partial f / \partial y$ is decreasing as we move through $(2,2)$ in the x-direction. This means that $\partial^{2} f / \partial x \partial y$ is negative. The same conclusion can be reached by considering the change in $\partial f / \partial x$ as you move through $(2,2)$ in the y-firection (try it!).
8. Find the equation of the tangent plane to $z=\sqrt{x y}$ at the point $(1,1,1)$.

Solution: $\partial z / \partial x=(y / 2)(x y)^{-1 / 2}$ and $\partial z / \partial y=(x / 2)(x y)^{-1 / 2}$. Therefore,

$$
\begin{aligned}
z & =1+\frac{1}{2} 1^{-1 / 2}(x-1)+\frac{1}{2} 1^{-1 / 2}(y-1) \\
z & =1+\frac{1}{2}(x-1)+\frac{1}{2}(y-1) \\
x+y-2 z & =0
\end{aligned}
$$

9. You have three resistors labeled $10 \Omega, 20 \Omega$ and 30Ω. Each of the resistances is guaranteed accurate to within 1%.
(a) You connect the resistors in series, hoping to get a resistance of 60Ω (there was a mistake in the original question here, sorry). Use differentials to estimate the maximum error in the resistance.
(b) You connect the resistors in parallel, hoping to get a resistance of $\frac{60}{11} \Omega$. Use differentials to estimate the maximum error in the resistance.

Solution:

(a) Let $R_{s}\left(r_{1}, r_{2}, r_{3}\right)=r_{1}+r_{2}+r_{3}$ be the overall resistance of the series. Then the differentials $d R, d r_{1}, d r_{2}$ and $d r_{3}$ are connected by the formula

$$
\begin{aligned}
d R_{s} & =\frac{\partial R_{s}}{\partial r_{1}} d r_{1}+\frac{\partial R_{s}}{\partial r_{2}} d r_{2}+\frac{\partial R_{s}}{\partial r_{3}} \\
& =d r_{1}+d r_{2}+d r_{3} .
\end{aligned}
$$

$r_{1}=10 \Omega, r_{2}=20 \Omega, r_{3}=30 \Omega, d r_{1}=0.1 \Omega, d r_{2}=0.2 \Omega$ and $d r_{3}=0.3 \Omega$. Therefore $d R_{s}=0.6 \Omega$ and this is exactly equal to the maximum error in the overall resistance (if you work out the numbers, $57.4 \Omega<R_{s}<60.6 \Omega$). Note that this illustrates that if the function is linear, the differential is exact.
(b) The resistance in parallel is given by

$$
R_{p}\left(r_{1}, r_{2}, r_{3}\right)=\frac{1}{\left(1 / r_{1}\right)+\left(1 / r_{2}\right)+\left(1 / r_{3}\right)} .
$$

The formula for the differentials is

$$
\begin{aligned}
d R_{p} & =\frac{\partial R_{p}}{\partial r_{1}} d r_{1}+\frac{\partial R_{p}}{\partial r_{2}} d r_{2}+\frac{\partial R_{p}}{\partial r_{3}} \\
& =\frac{r_{2}^{2} r_{3}^{2}}{\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}\right)^{2}} d r_{1}+\frac{r_{1}^{2} r_{3}^{2}}{\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}\right)^{2}} d r_{2}+\frac{r_{1}^{2} r_{2}^{2}}{\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}\right)^{2}} d r_{3} .
\end{aligned}
$$

Plugging in the numbers, $d R_{p}=0.0545 \Omega$ and this is a good estimate to the maximum error in the overall resistance (if you work out the numbers, $5.4 \Omega<R_{p}<5.509 \Omega$).

