Math 263 Assignment 3

Due September 26
Problems from the text (do NOT turn in these problems):
(15.1) 13-18, 23-27, 30-42, 55-60. (15.2) 5-12. (15.3) 5-10, 15-20, 51-56, 70, 74-75. (15.4) 1-6, $11-20,40,41,42$. (15.5) 1-12, 21-34, 40.

Problems to turn in:

1. (a) Draw a contour diagram for the function $f(x, y)=\sqrt{(x-1)^{2}+(y-2)^{2}}$. Indicate the contours $f(x, y)=1,2,3$ and 4 .
(b) Calculate $\nabla f(2,3)$ and indicate this vector on your diagram.
(c) Consider $z=f(x, y)$. Find the equation of the tangent plane to $f(x, y)$ at the point $(2,3)$.
2. A function $z=f(x, y)$ is called harmonic if it satisfies this equation:

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0 .
$$

This is called Laplace's Equation. Determine whether or not the following functions are harmonic:
(a) $z=\sqrt{x^{2}+y^{2}}$
(b) $e^{-x} \sin y$
(c) $3 x^{2} y-y^{3}$
3. In each case, give an example of an appropriate function or show that no such fuction exists.
(a) A function $f(x, y)$ with continuous second order partial derivatives and which satisfies $\frac{\partial f}{\partial x}=6 x y^{2}$ and $\frac{\partial f}{\partial y}=8 x^{2} y$.
(b) A function $g(x, y)$ satisfying the equations $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=2 x y$.
4. Use the appropriate version of the chain rule to compute the following:
(a) $d w / d t$ at $t=3$, where $w=\ln \left(x^{2}+y^{2}+z^{2}\right), x=\cos t, y=\sin t$, and $z=4 \sqrt{t}$.
(b) $\partial z / \partial u$ and $\partial z / \partial v$, where $z=x y, x=u \cos v$, and $y=u \sin v$.
5. Suppose a duck is swimming around in a circle, with position given by $x=\cos t$ and $y=\sin t$. Suppose that the water temperature is given by $T=x^{2} e^{y}-x y^{3}$. Find the rate of change in temperature that the duck experiences as it passes through the point $(1 / \sqrt{2},-1 / \sqrt{2})$.
6. Compute the following using implicit differentiation:
(a) $\partial y / \partial z$ if $e^{y z}-x^{2} z \ln y=\pi$.
(b) $d y / d x$ if $F\left(x, y, x^{2}-y^{2}\right)=0$.
7. The surface plot $z=f(x, y)$ and the contour diagram are shown:

Look at the point $(2,2)$. At this point, find the sign (positive or negative) of each of the following quantities:

- $\partial f / \partial x$
- $\partial f / \partial y$
- $\partial^{2} f / \partial x^{2}$
- $\partial^{2} f / \partial y^{2}$
- $\partial^{2} f / \partial x \partial y$

8. Find the equation of the tangent plane to $z=\sqrt{x y}$ at the point $(1,1,1)$.
9. You have three resistors labeled $10 \Omega, 20 \Omega$ and 30Ω. Each of the resistances is guaranteed accurate to within 1%.
(a) You connect the resistors in series, hoping to get a resistance of 6000Ω. Use differentials to estimate the maximum error in the resistance.
(b) You connect the resistors in parallel, hoping to get a resistance of $\frac{60}{11} \Omega$. Use differentials to estimate the maximum error in the resistance.
