Math 263 Assignment 3

Due September 26

Problems from the text (do NOT turn in these problems):

(15.1) 13-18, 23-27, 30-42, 55-60. (15.2) 5-12. (15.3) 5-10, 15-20, 51-56, 70, 74-75. (15.4) 1-6, 11-20, 40, 41, 42. (15.5) 1-12, 21-34, 40.

Problems to turn in:

- 1. (a) Draw a contour diagram for the function $f(x, y) = \sqrt{(x-1)^2 + (y-2)^2}$. Indicate the contours f(x, y) = 1, 2, 3 and 4.
 - (b) Calculate $\nabla f(2,3)$ and indicate this vector on your diagram.
 - (c) Consider z = f(x, y). Find the equation of the tangent plane to f(x, y) at the point (2, 3).
- 2. A function z = f(x, y) is called *harmonic* if it satisfies this equation:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

This is called *Laplace's Equation*. Determine whether or not the following functions are harmonic:

- (a) $z = \sqrt{x^2 + y^2}$
- (b) $e^{-x} \sin y$

(c)
$$3x^2y - y^3$$

3. In each case, give an example of an appropriate function or show that no such fuction exists.

- (a) A function f(x, y) with continuous second order partial derivatives and which satisfies $\frac{\partial f}{\partial x} = 6xy^2$ and $\frac{\partial f}{\partial y} = 8x^2y$.
- (b) A function g(x, y) satisfying the equations $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 2xy$.
- 4. Use the appropriate version of the chain rule to compute the following:
 - (a) dw/dt at t = 3, where $w = \ln(x^2 + y^2 + z^2)$, $x = \cos t$, $y = \sin t$, and $z = 4\sqrt{t}$.
 - (b) $\partial z/\partial u$ and $\partial z/\partial v$, where $z = xy, x = u \cos v$, and $y = u \sin v$.
- 5. Suppose a duck is swimming around in a circle, with position given by $x = \cos t$ and $y = \sin t$. Suppose that the water temperature is given by $T = x^2 e^y - xy^3$. Find the rate of change in temperature that the duck experiences as it passes through the point $(1/\sqrt{2}, -1/\sqrt{2})$.

- 6. Compute the following using implicit differentiation:
 - (a) $\partial y / \partial z$ if $e^{yz} x^2 z \ln y = \pi$.
 - (b) dy/dx if $F(x, y, x^2 y^2) = 0$.
- 7. The surface plot z = f(x, y) and the contour diagram are shown:

Look at the point (2,2). At this point, find the sign (positive or negative) of each of the following quantities:

- $\partial f / \partial x$
- $\partial f/\partial y$
- $\partial^2 f / \partial x^2$
- $\partial^2 f / \partial y^2$
- $\partial^2 f / \partial x \partial y$
- 8. Find the equation of the tangent plane to $z = \sqrt{xy}$ at the point (1, 1, 1).
- 9. You have three resistors labeled 10Ω , 20Ω and 30Ω . Each of the resistances is guaranteed accurate to within 1%.
 - (a) You connect the resistors in series, hoping to get a resistance of 6000Ω . Use differentials to estimate the maximum error in the resistance.
 - (b) You connect the resistors in parallel, hoping to get a resistance of $\frac{60}{11}\Omega$. Use differentials to estimate the maximum error in the resistance.