MATH 263 ASSIGNMENT 1 SOLUTIONS

1) Find the equation of a sphere if one of its diameters has end points $(2,1,4)$ and $(4,3,10)$.

Solution. The centre of the sphere is the midpoint of the diameter, which is $\frac{1}{2}[(2,1,4)+(4,3,10)]=$ $(3,2,7)$. The length of the diameter is $\sqrt{|(4,3,10)-(2,1,4)|^{2}}=\sqrt{2^{2}+2^{2}+6^{2}}=\sqrt{44}$ so the radius of the sphere is $\frac{1}{2} \sqrt{44}=\sqrt{11}$. The equation of the sphere is $(x-3)^{2}+(y-2)^{2}+(z-7)^{2}=11$
2) Show that the set of all points P that are twice as far from $(-1,5,3)$ as from $(6,2,-2)$ is a sphere. Find its centre and radius.

Solution. Let the coordinates of a point P be (x, y, z). This point is twice as far from $(-1,5,3)$ as from $(6,2,-2)$ if and only if

$$
\begin{aligned}
& \sqrt{(x+1)^{2}+(y-5)^{2}+(z-3)^{2}}=2 \sqrt{(x-6)^{2}+(y-2)^{2}+(z+2)^{2}} \\
\Longleftrightarrow & (x+1)^{2}+(y-5)^{2}+(z-3)^{2}=4(x-6)^{2}+4(y-2)^{2}+4(z+2)^{2} \\
\Longleftrightarrow & x^{2}+2 x+1+y^{2}-10 y+25+z^{2}-6 z+9=4 x^{2}-48 x+144+4 y^{2}-16 y+16+4 z^{2}+16 z+16 \\
\Longleftrightarrow & 3 x^{2}-50 x+3 y^{2}-6 y+3 z^{2}+22 z+141=0 \\
\Longleftrightarrow & 3\left(x-\frac{25}{3}\right)^{2}+3(y-1)^{2}+3\left(z+\frac{11}{3}\right)^{2}+141-\frac{625}{3}-3-\frac{121}{3}=0 \\
\Longleftrightarrow & \left(x-\frac{25}{3}\right)^{2}+(y-1)^{2}+\left(z+\frac{11}{3}\right)^{2}=\frac{332}{9}
\end{aligned}
$$

This is a circle of centre $\left(\frac{25}{3}, 1,-\frac{11}{3}\right)$ and radius $\frac{\sqrt{332}}{3}$.
3) Describe and sketch the set of all points in \mathbb{R}^{3} that satisfy
a) $x^{2}+y^{2}+z^{2}=2 z$
b) $x^{2}+z^{2}=4$
c) $z \geq \sqrt{x^{2}+y^{2}}$
d) $x^{2}+y^{2}+z^{2}=4, z=1$
e) $x+y+z=1$

Solution.

a) Since $x^{2}+y^{2}+z^{2}=2 z$ is equivalent to $x^{2}+y^{2}+(z-1)^{2}=1$, this is the set of points whose distance from $(0,0,1)$ is 1 . So this is the sphere of radius 1 centred on $(0,0,1)$.
b) For each fixed $y_{0} \geq 0$, the curve $x^{2}+z^{2}=4, y=y_{0}$ is a circle in the plane $y=y_{0}$ with centre $\left(0, y_{0}, 0\right)$ and radius 2 . As $x^{2}+z^{2}=4$ is the union of $x^{2}+z^{2}=4, y=y_{0}$ for all possible values of y_{0}, it is a horizontal stack of vertical circles. The surface is the cylinder of radius 2 centred on the y-axis.
c) For each fixed $z_{0} \geq 0$, the curve $z=\sqrt{x^{2}+y^{2}}, z=z_{0}$ is a circle in the plane $z=z_{0}$ with centre $\left(0,0, z_{0}\right)$ and radius z_{0}. As $\sqrt{x^{2}+y^{2}}=z$ is the union of $\sqrt{x^{2}+y^{2}}=z, z=z_{0}$ for all possible values of $z_{0} \geq 0$, it is a vertical stack of horizontal circles whose radii increase linearly with z. It is a cone centered on the z-axis. $z>\sqrt{x^{2}+y^{2}}$ is the region above this cone. It is a solid cone.
d) This is the circle of radius $\sqrt{3}$ centred on $(0,0,1)$ that lies parallel to the $x y$-plane.
e) This is the plane which passes through the points $(1,0,0),(0,1,0)$ and $(0,0,1)$.

4) Compute the dot product of the vectors \vec{a} and \vec{b}. Find the angle between them.
a) $\vec{a}=\langle-1,1\rangle, \vec{b}=\langle 1,1\rangle$
b) $\vec{a}=\langle 1,1\rangle, \vec{b}=\langle 2,2\rangle$

Solution.

$$
\begin{array}{lll}
\text { a) } & \vec{a} \cdot \vec{b}=\langle-1,1\rangle \cdot\langle 1,1\rangle=0 & \cos \theta=\frac{0}{\sqrt{2} \sqrt{2}}=0
\end{array} \quad \theta=90^{\circ} .
$$

5) Use a projection to derive a formula for the distance from a point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y=c$. Here, a and b are not both zero.
Solution. Let $\left(x_{2}, y_{2}\right)$ be any point on the line. Then $a x_{2}+b y_{2}=c$. If (x, y) is any other point on the line, then $a x+b y=c$ so that $a\left(x_{2}-x\right)+b\left(y_{2}-y\right)=c-c=0$. That is, $\langle a, b\rangle$ is perpendicular to $\left\langle x_{2}-x, y_{2}-y\right\rangle$. As $\left\langle x_{2}-x, y_{2}-y\right\rangle$ is an arbitrary vector lying on the line, $\langle a, b\rangle$ is a normal to the line. The distance from $\left(x_{1}, y_{1}\right)$ to $a x+b y=c$ is the length of the projection of the vector $\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle$ on the vector $\langle a, b\rangle$, which is

$$
\frac{\left|\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \cdot\langle a, b\rangle\right|}{|\langle a, b\rangle|}=\frac{\left|a x_{1}-a x_{2}+b y_{1}-b y_{2}\right|}{\sqrt{a^{2}+b^{2}}}=\frac{\left|a x_{1}+b y_{1}-c\right|}{\sqrt{a^{2}+b^{2}}}
$$

6) Compute $\langle 1,2,3\rangle \times\langle 4,5,6\rangle$.

Solution.

$\langle 1,2,3\rangle \times\langle 4,5,6\rangle=\operatorname{det}\left[\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathbf{k}} \\ 1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\hat{\boldsymbol{\imath}}(2 \times 6-3 \times 5)-\hat{\boldsymbol{\jmath}}(1 \times 6-3 \times 4)+\hat{\mathbf{k}}(1 \times 5-2 \times 4)=-3 \hat{\imath}+6 \hat{\boldsymbol{\jmath}}-3 \hat{\mathbf{k}}$
7) Prove that
a) $\hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{\jmath}}=\hat{\mathbf{k}}$
b) $\vec{a} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{a} \times \vec{b})=0$
c) $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$

Solution. a)

$$
\hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{\jmath}}=\operatorname{det}\left[\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\mathbf{k}} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\hat{\boldsymbol{\imath}}(0 \times 0-0 \times 1)-\hat{\boldsymbol{\jmath}}(1 \times 0-0 \times 0)+\hat{\mathbf{k}}(1 \times 1-0 \times 0)=\hat{\mathbf{k}}
$$

b)

$$
\begin{aligned}
\vec{a} \cdot(\vec{a} \times \vec{b}) & =a_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-a_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0 \\
\vec{b} \cdot(\vec{a} \times \vec{b}) & =b_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-b_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0
\end{aligned}
$$

c) Just compare

$$
\begin{aligned}
& |\vec{a} \times \vec{b}|^{2}=\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
& \quad=a_{2}^{2} b_{3}^{2}-2 a_{2} b_{3} a_{3} b_{2}+a_{3}^{2} b_{2}^{2}+a_{3}^{2} b_{1}^{2}-2 a_{3} b_{1} a_{1} b_{3}+a_{1}^{2} b_{3}^{2}+a_{1}^{2} b_{2}^{2}-2 a_{1} b_{2} a_{2} b_{1}+a_{2}^{2} b_{1}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& |\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
& \quad=a_{1}^{2} b_{2}^{2}+a_{1}^{2} b_{3}^{2}+a_{2}^{2} b_{1}^{2}+a_{2}^{2} b_{3}^{2}+a_{3}^{2} b_{1}^{2}+a_{3}^{2} b_{2}^{2}-\left(2 a_{1} b_{1} a_{2} b_{2}+2 a_{1} b_{1} a_{3} b_{3}+2 a_{2} b_{2} a_{3} b_{3}\right)
\end{aligned}
$$

8) Find the equation of the sphere which has the two planes $x+y+z=3, x+y+z=9$ as tangent planes if the centre of the sphere is on the planes $2 x-y=0,3 x-z=0$.
Solution. The planes $x+y+z=3$ and $x+y+z=9$ are parallel. So the centre lies on $x+y+z=6$ (the plane midway between $x+y+z=3$ and $x+y+z=9$) as well as on $y=2 x$ and $z=3 x$. Solving,

$$
y=2 x, z=3 x, x+y+z=6 \Rightarrow x+2 x+3 x=6 \Rightarrow x=1, y=2, z=3
$$

So the centre is at $(1,2,3)$. The normal to $x+y+z=3$ is $\langle 1,1,1\rangle$. The points $(1,1,1)$ on $x+y+z=3$ and $(3,3,3)$ on $x+y+z=9$ differ by a vector, $\langle 2,2,2\rangle$, which is a multiple of this normal. So the distance between the planes is $|\langle 2,2,2\rangle|=2 \sqrt{3}$ and the radius of the sphere is $\sqrt{3}$. The sphere is

$$
(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=3
$$

9) Find the equation of the plane that passes through the point $(-2,0,-1)$ and through the line of intersection of $2 x+3 y-z=0, x-4 y+2 z=-5$.
Solution. First we'll find two points on the line of intersection of $2 x+3 y-z=0, x-4 y+2 z=-5$. This will give us three points on the plane.

$$
\left\{\begin{array}{l}
2 x+3 y-z=0 \\
x-4 y+2 z=-5
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
2 x+3 y=z \\
x-4 y=-2 z-5
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{r}
2 x+3 y=z \\
11 y=5(z+2)
\end{array}\right\}
$$

In the last step, we subtracted twice the second equation from the first. So if $z=-2$, then $y=0$ and $x=-1$. And if $z=-\frac{15}{2}$, then $y=-\frac{5}{2}$ and $x=0$. So we conclude that the three points $(-2,0,-1)$, $(-1,0,-2)$ and $\left(0,-\frac{5}{2},-\frac{15}{2}\right)$ must all lie on the plane. So the two vectors $\langle-2,0,-1\rangle-\langle-1,0,-2\rangle=$ $\langle-1,0,1\rangle$ and $\left\langle 0,-\frac{5}{2},-\frac{15}{2}\right\rangle-\langle-1,0,-2\rangle=\left\langle 1,-\frac{5}{2},-\frac{11}{2}\right\rangle$ must be parallel to the plane. So the normal to the plane is $\langle-1,0,1\rangle \times\left\langle 1,-\frac{5}{2},-\frac{11}{2}\right\rangle=\left\langle\frac{5}{2},-\frac{9}{2}, \frac{5}{2}\right\rangle$ or, equivalently $\vec{n}=\langle 5,-9,5\rangle$. The equation of the plane is

$$
5(x+2)-9 y+5(z+1)=0 \text { or } 5 x-9 y+5 z=-15
$$

10) Find the equations of the line through $(2,-1,-1)$ and parallel to each of the two planes $x+y=0$ and $x-y+2 z=0$. Express the equations of the line in vector and scalar parametric forms and in symmetric form.

Solution. One vector normal to $x+y=0$ is $\langle 1,1,0\rangle$. One vector normal to $x-y+2 z=0$ is $\langle 1,-1,2\rangle$. The vector $\langle 1,-1,-1\rangle$ is perpendicular to both of those normals and hence is parallel to both planes. So $\langle 1,-1,-1\rangle$ is also parallel to the line. The vector parametric equation of the line is

$$
\vec{x}=(2,-1,-1)+t(1,-1,-1)
$$

The scalar parametric equations of the line are

$$
x=2+t, y=-1-t, z=-1-t
$$

The symmetric equations are

$$
t=x-2=-y-1=-z-1
$$

