Math 263 Assignment 1

Due September 12

Problems from the text (do NOT turn in these problems):

(13.1) $11-14,15,17,40$; (13.2) $17-22,29,32$, 33 ; (13.3) $7-10,11,12,15,17,49,50 ;$
(13.4) 1-4, 29, 30; (13.5) 2-14, 23-38, 46, 48, 51, 52, 56, 61, 65.

Problems to turn in:

1) Find the equation of a sphere if one of its diameters has end points $(2,1,4)$ and $(4,3,10)$.
2) Show that the set of all points P that are twice as far from $(-1,5,3)$ as from $(6,2,-2)$ is a sphere. Find its centre and radius.
3) Describe and sketch the set of all points in \mathbb{R}^{3} that satisfy
a) $x^{2}+y^{2}+z^{2}=2 z$
b) $x^{2}+z^{2}=4$
c) $z \geq \sqrt{x^{2}+y^{2}}$
d) $x^{2}+y^{2}+z^{2}=4, z=1$
e) $x+y+z=1$
4) Compute the dot product of the vectors \vec{a} and \vec{b}. Find the angle between them.
a) $\vec{a}=\langle-1,1\rangle, \vec{b}=\langle 1,1\rangle$
b) $\vec{a}=\langle 1,1\rangle, \vec{b}=\langle 2,2\rangle$
5) Use a projection to derive a formula for the distance from a point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y=c$. Here, a and b are not both zero.
6) Compute $\langle 1,2,3\rangle \times\langle 4,5,6\rangle$.
7) Prove that
a) $\hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{\jmath}}=\hat{\mathbf{k}}$
b) $\vec{a} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{a} \times \vec{b})=0$
c) $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
8) Find the equation of the sphere which has the two planes $x+y+z=3, x+y+z=9$ as tangent planes if the centre of the sphere is on the planes $2 x-y=0,3 x-z=0$.
9) Find the equation of the plane that passes through the point $(-2,0,-1)$ and through the line of intersection of $2 x+3 y-z=0, x-4 y+2 z=-5$.
10) Find the equation of the line through $(2,-1,-1)$ and parallel to each of the two planes $x+y=0$ and $x-y+2 z=0$.
