
MATHEMATICS 200 April 2002 Final Exam Solutions

[15] 1) Consider the space curve Γ whose vector equation is

r(t) = t sin(πt)̂ııı+ t cos(πt)̂+ t2k̂ 0 ≤ t <∞

This curve starts from the origin and eventually reaches the ellipsoid E whose equation is 2x2+2y2+z2 =
24.
a) Determine the coordinates of the point P where Γ intersects E.
b) Find the tangent vector of Γ at the point P .
c) Does Γ intersect E at right angles? Why or why not?

Solution. a) The curve intersects E when

2
(
t sin(πt)

)2 + 2
(
t cos(πt)

)2 +
(
t2
)2 = 24 ⇐⇒ 2t2 + t4 = 24 ⇐⇒ (t2 − 4)(t2 + 6) = 0

Since we need t > 0, the desired time is t = 2 and the corresponding point is r(2) = 2̂+ 4k̂ .
b) Since

r′(t) =
[

sin(πt) + πt cos(πt)
]̂
ııı+
[

cos(πt)− πt sin(πt)
]
̂+ 2tk̂

a tangent vector to Γ at P is

r′(2) = 2πı̂ıı+ ̂+ 4k̂

c) A normal vector to E at P is

∇∇∇(2x2 + 2y2 + z2)
∣∣
(0,2,4)

=
(
4x, 4y, 2z

)∣∣
(0,2,4)

= (0, 8, 8)

Since r′(2) and (0, 8, 8) are not parallel, Γ and E do not intersect at right angles .

[10] 2) Let f(r, θ) = rm cosmθ be a function of r and θ, where m is a positive integer.
a) Find the second order partial derivatives frr, frθ, fθθ and evaluate their respective values at (r, θ) =

(1, 0).
b) Determine the value of the real number λ so that f(r, θ) satisfies the differential equation

frr + λ
r fr + 1

r2 fθθ = 0

Solution. a) The first order derivatives are

fr(r, θ) = mrm−1 cosmθ fθ(r, θ) = −mrm sinmθ

The second order derivatives are

frr(r, θ) = m(m− 1)rm−2 cosmθ frθ(r, θ) = −m2rm−1 sinmθ fθθ(r, θ) = −m2rm cosmθ

so that
frr(1, 0) = m(m− 1), frθ(1, 0) = 0, fθθ(1, 0) = −m2

b)
frr + λ

r fr + 1
r2 fθθ = m(m− 1)rm−2 cosmθ + λmrm−2 cosmθ −m2rm−2 cosmθ

vanishes for all r and θ if and only if

m(m− 1) + λm−m2 = 0 ⇐⇒ m(λ− 1) = 0 ⇐⇒ λ = 1
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[12] 3 a) Show that the function f(x, y) = 2x + 4y + 1
xy has exactly one critical point in the first quadrant

x > 0, y > 0, and find its value at that point.
b) Use the second derivative test to classify the critical point in part (a).
c) Hence explain why the inequality 2x+ 4y + 1

xy ≥ 6 is valid for all positive real numbers x and y.

Solution. a) For x, y > 0,
fx = 2− 1

x2y = 0 ⇐⇒ y = 1
2x2

fy = 4− 1
xy2 = 0

Subbing the first equation into the second gives 4− 4x3 = 0 which forces x = 1, y = 1
2 .

b) The second derivatives are

fxx(x, y) = 2
x3y fxy(x, y) = 1

x2y2 fyy(x, y) = 2
xy3

In particular
fxx
(
1, 1

2

)
= 4 fxy

(
1, 1

2

)
= 4 fyy

(
1, 1

2

)
= 16

Since fxx
(
1, 1

2

)
fyy
(
1, 1

2

)
− fxy

(
1, 1

2

)2 = 48 > 0 and fxx
(
1, 1

2

)
= 4 > 0, the point

(
1, 1

2

)
is a

local minimum .
c) As x or y tends to infinity (with the other at least zero), 2x + 4y tends to +∞. As x or y tends to
zero (with the other bigger than zero), 1

xy tends to +∞. Hence as x or y tends to the boundary of the
first quadrant (counting infinity as part of the boundary), f(x, y) tends to +∞. As a result

(
1, 1

2

)
is

a global (and not just local) minimum for f in the first quadrant. Hence f(x, y) ≥ f
(
1, 1

2

)
= 6 for all

x, y > 0.

[12] 4) Let f(x, y) be a differentiable function with f(1, 2) = 7. Let

u = 3
5 ı̂ıı+ 4

5 ̂, v = 3
5 ı̂ıı−

4
5 ̂

be unit vectors. Suppose it is known that the directional derivatives Duf(1, 2) and Dvf(1, 2) are equal
to 10 and 2 respectively.
a) Show that the gradient vector ∇∇∇f at (1, 2) is 10̂ııı+ 5̂.
b) Determine the rate of change of f at (1, 2) in the direction of the vector ı̂ıı+ 2̂.
c) Using the tangent plane approximation, estimate the value of f(1.01, 2.05).

Solution. a) Denote ∇∇∇f(1, 2) = (a, b). We are told that

Duf(1, 2) = u · (a, b) = 3
5a+ 4

5b = 10
Dvf(1, 2) = v · (a, b) = 3

5a−
4
5b = 2

Adding these two equations gives 6
5a = 12 which forces a = 10 and subtracting the two equations gives

8
5b = 8, which forces b = 5, as desired.
b) The rate of change of f at (1, 2) in the direction of the vector ı̂ıı+ 2̂ is

ı̂ıı+2̂
|̂ııı+2̂| · ∇∇∇f(1, 2) = 1√

5
(1, 2) · (10, 5) = 4

√
5 ≈ 8.944

c)

f(1.01, 2.05) ≈ f(1, 2) + fx(1, 2)× (1.01− 1) + fy(1, 2)× (2.05− 2) = 7 + 10× 0.01 + 5× 0.05

= 7.35
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[15] 5) A metal plate is in the form of a semi–circular disc bounded by the x–axis and the upper half of
x2 + y2 = 4. The temperature at the point (x, y) is given by T (x, y) = ln

(
1 + x2 + y2

)
− y. Find the

coldest point on the plate, explaining your steps carefully. (Note: ln 2 ≈ 0.693, ln 5 ≈ 1.609)
Solution. The coldest point must be either on the boundary of the plate or in the interior of the plate.
◦ on the semi–circular part of the boundary 0 ≤ y ≤ 2 and x2+y2 = 4 so that T = ln

(
1+x2+y2

)
−y =

ln 5− y. The smallest value of ln 5− y is taken when y = 2 and is ln 5− 2 ≈ −0.391.
◦ on the flat part of the boundary y = 0 and −2 ≤ x ≤ 2 so that T = ln

(
1+x2 +y2

)
−y = ln

(
1+x2

)
.

The smallest value of ln
(
1 + x2

)
is taken when x = 0 and is 0.

◦ If the coldest point is in the interior of the plate, it must be at a critical point of T (x, y). Since

Tx(x, y) = 2x
1+x2+y2 Ty(x, y) = 2y

1+x2+y2 − 1

a critical point must have x = 0 and 2y
1+x2+y2 − 1 = 0, which is the case if and only if x = 0 and

2y − 1− y2 = 0. So the only critical point is x = 0, y = 1, where T = ln 2− 1 ≈ −0.307.
Since −0.391 < −0.307 < 0, the coldest temperture is −0.391 and the coldest point is (0,2) .

[14] 6) Find the dimensions of the box of maximum volume which has its faces parallel to the coordinate planes
and which is contained inside the region 0 ≤ z ≤ 48− 4x2 − 3y2.

z

y

x

Solution. The optimal box will have vertices (±x,±y, 0), (±x,±y, z) with x, y, z > 0 and z = 48 −
4x2 − 3y2. (If the lower vertices are not in the xy–plane, the volume of the box can be increased
by lowering the bottom of the box to the xy–plane. If any of the four upper vertices are not on the
hemisphere, the volume of the box can be increased by moving the upper vertices outwards to the
hemisphere.) The volume of this box will be (2x)(2y)z. Use the method of Lagrange multipliers with
f(x, y, z, λ) = xyz − λ

(
48− 4x2 − 3y2 − z

)
. Then

fx = yz + 8λx = 0
fy = xz + 6λy = 0
fz = xy + λ = 0

fλ = 48− 4x2 − 3y2 − z = 0

Multiplying the first equation by x, the second equation by y and the third equation by z gives

xyz + 8λx2 = 0

xyz + 6λy2 = 0
xyz + λz = 0

This forces 8λx2 = 6λy2 = λz. Since λ cannot be zero (because that would force xyz = 0), this in turn
gives 8x2 = 6y2 = z. Subbing in to the fourth equation gives

48− z
2 −

z
2 − z = 0 =⇒ 2z = 48 =⇒ z = 24, 8x2 = 24, 6y2 = 24
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The dimensions of the box of biggest volume are 2x = 2
√

3 by 2y = 4 by z = 24 .

[12] 7) Consider the volume above the xy–plane that is inside the circular cylinder x2 +y2 = 2y and underneath
the surface z = 8 + 2xy.
a) Express this volume as a double integral I, stating clearly the domain over which I is to be taken,

Include sketches.
b) Express in Cartesian coordinates, the double integral I as an iterated intergal in two different ways,

indicating clearly the limits of integration in each case.
c) How much is this volume?

Solution. a) We are (in part (c)) to find the volume of the set of points (x, y, z) that obey x2+(y−1)2 ≤ 1
and 0 ≤ z ≤ 8 + 2xy. When we look at this region from far above we see the set of points (x, y) that
obey x2 + (y− 1)2 ≤ 1 and 8 + 2xy ≥ 0. All points in x2 + (y− 1)2 ≤ 1 have −1 ≤ x ≤ 1 and 0 ≤ y ≤ 2
and hence −2 ≤ xy ≤ 2 and 8 + 2xy ≥ 0. So the domain of integration consists of all of the disk
x2 + (y − 1)2 ≤ 1. This region is sketched on the right below. The volume is∫∫

D

(8 + 2xy) dxdy where D =
{

(x, y)
∣∣ x2 + (y − 1)2 ≤ 1

}

x

y

x2 + y2 = 2yDb)

volume =
∫ 2

0

dy

∫ √2y−y2

−
√

2y−y2
dx (8 + 2xy)

=
∫ 1

−1

dx

∫ 1+
√

1−x2

1−
√

1−x2
dy (8 + 2xy)

c) Since
∫∫
D

8 dxdy is just 8 times the area of D, which is π,

volume = 8π +
∫ 2

0

dy

∫ √2y−y2

−
√

2y−y2
dx 2xy = 8π + 2

∫ 2

0

dy y

∫ √2y−y2

−
√

2y−y2
dx x

= 8π

because
∫√2y−y2

−
√

2y−y2
dx x = 0 for all y, because the integrand is odd and the domain of integration is even.

[10] 8 a) Evaluate
∫∫∫

Ω
z dV where Ω is the three dimensional region in the first octant x ≥ 0, y ≥ 0, z ≥ 0,

occupying the inside of the sphere x2 + y2 + z2 = 1.
b) Use the result in part (a) to quickly determine the centroid of a hemispherical ball given by z ≥ 0,

x2 + y2 + z2 ≤ 1.
Solution. a) In spherical coordinates,

x = R sinφ cos θ y = R sinφ sin θ z = R cosφ

the sphere x2 + y2 + z2 = 1 is R = 1, the xy–plane, z = 0 is φ = π
2 , the positive half of the xz–plane,

y = 0, x > 0 is θ = 0 and the positive half of the yz–plane, x = 0, y > 0 is θ = π
2 . So∫∫∫

Ω

z dV =
∫ 1

0

dR

∫ π/2

0

dφ

∫ π/2

0

dθ R2 sinφ(R cosφ)

= π
2

∫ 1

0

dR

∫ π/2

0

dφ R3 sinφ cosφ

= π
2

∫ 1

0

dR R3 1
2 sin2 φ

∣∣π/2
0

= π
4

∫ 1

0

dR R3 = π
16

b) The hemispherical ball given by z ≥ 0, x2 + y2 + z2 ≤ 1 (call it H) has centroid (x̄, ȳ, z̄) with
x̄ = ȳ = 0 (by symmetry) and

z̄ =

∫∫∫
H
z dV∫∫∫

H
dV

=
4
∫∫∫

Ω
z dV

1
2 ×

4
3π

=
π
4

2π
3

= 3
8
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