Math 253, Section 102, Fall 2006

Sample Problems from Week 4

Example 1 : Determine whether the following limits exist. If yes, find the limit. If not, justify.
(i) $\lim _{(x, y) \rightarrow(0,0)} \arctan \left(-\frac{1}{x^{2}+y^{2}}\right)$,
(ii) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{4}+x^{2} y^{2}+y^{4}}$,
(iii) $\lim _{(x, y, z) \rightarrow(0,0,0)} \sin \left(\frac{1}{x^{2}+y^{2}+z^{2}}\right)$.

Solution. (i) Convert to polar coordinates; i.e., set $r=\sqrt{x^{2}+y^{2}}$. Then $r \rightarrow 0$ as $(x, y) \rightarrow 0$. Therefore,
$\lim _{(x, y) \rightarrow(0,0)} \arctan \left(-\frac{1}{x^{2}+y^{2}}\right)=\lim _{r \rightarrow 0} \arctan \left(-\frac{1}{r^{2}}\right)=\lim _{z \rightarrow-\infty} \arctan z=-\frac{\pi}{2}$,
where at the last but one step we have substituted $z=-1 / r^{2}$.
(ii) The substitution $y=m x$ yields

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{4}+x^{2} y^{2}+y^{4}}=\lim _{x \rightarrow 0} \frac{x^{4}\left(1-m^{4}\right)}{x^{4}\left(1+m^{2}+m^{4}\right)}=\frac{1-m^{4}}{1+m^{2}+m^{4}} .
$$

Hence if $(x, y) \rightarrow(0,0)$ along the line $y=0$ (where $m=0$, then the limit is 1 , whereas if $(x, y) \rightarrow(0,0)$ along the line $y=x$ (when $m=1$), the limit is 0 . Therefore the limit does not exist.
(iii) Using spherical coordinates yields

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \sin \left(\frac{1}{x^{2}+y^{2}+z^{2}}\right)=\lim _{\rho \rightarrow 0} \sin \left(\frac{1}{\rho^{2}}\right)=\lim _{t \rightarrow 0+} \sin \left(\frac{1}{t}\right) .
$$

Since the graph of $\sin (1 / t)$ oscillates arbitrarily fast between -1 and 1 near $t=0$, the limit does not exist.

Example 2 : Determine the largest set of points in the $x y$-plane on which $f(x, y)=\tan (1 /(x+y))$ defines a continuous function.

Solution. Because the tangent function is continuous on the set $\mathbb{R} \backslash$ $\{ \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2 \cdots\}$, the given function f has discontinuities whenever

$$
x+y=0 \quad \text { or } \quad \frac{1}{x+y}= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \cdots .
$$

The set of discontinous points is therefore the union of an infinite number of parallel straight lines, given by

$$
x+y= \pm \frac{2}{(2 n+1) \pi}, n=0,1,2, \cdots \text { and } x+y=0 .
$$

Example 3 : Compute the first-order partial derivatives of the following function :

$$
f(r, s, t)=\left(1-r^{2}-s^{2}-t^{2}\right) e^{-r s t} .
$$

Solution.

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =-2 r e^{-r s t}-s t\left(1-r^{2}-s^{2}-t^{2}\right) e^{-r s t} \\
& =e^{-r s t}\left(r^{2} s t+s^{3} t+s t^{3}-2 r-s t\right), \\
\frac{\partial f}{\partial s} & =-2 s e^{-r s t}-r t\left(1-r^{2}-s^{2}-t^{2}\right) e^{-r s t} \\
& =e^{-r s t}\left(r s^{2} t+r^{3} t+r t^{3}-2 s-r t\right), \\
\frac{\partial f}{\partial t} & =-2 t e^{-r s t}-r s\left(1-r^{2}-s^{2}-t^{2}\right) e^{-r s t} \\
& =e^{-r s t}\left(r s t^{2}+r^{3} s+r s^{3}-2 t-r s\right) .
\end{aligned}
$$

Example 4: Describe the level surface of the fnction $f(x, y, z)=$ $z+\sqrt{x^{2}+y^{2}}$.

Solution. The level surface of f is defined by the equation $f(x, y, z)=$ k, where k is a constant. This translates to $k-z=\sqrt{x^{2}+y^{2}}$. The level surfaces of f are therefore the lower nappes of circular cones with vertices on the z-axis.

Example 5 : Discuss the continuity of the function

$$
f(x, y)= \begin{cases}\frac{\sin (x y)}{x y} & \text { if } x y \neq 0 \\ 1 & \text { if } x y=0 .\end{cases}
$$

Solution. The ratio of two continuous functions is always continuous, as long as the denominator does not vanish. Therefore f is continuous at every (a, b) such that $a b \neq 0$. We therefore only need to verify continuity at a point where $a b=0$. Using the substitution $z=x y$ and the basic trigonometric limit $\sin t / t \rightarrow 1$ as $t \rightarrow 0$, we get

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{\sin (x y)}{x y}=\lim _{z \rightarrow a b} \frac{\sin z}{z}=1=f(a, b) .
$$

Therefore f is continuous at all $(a, b) \in \mathbb{R}^{2}$.
Example 6 : Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$.

$$
y z=\ln (x+z)
$$

Solution. Differentiating the equation with respect to x we get,

$$
y \frac{\partial z}{\partial x}=\frac{1+\frac{\partial z}{\partial x}}{x+z}
$$

Solving for $\partial z / \partial x$ gives

$$
\frac{\partial z}{\partial x}=\frac{1}{y(x+z)-1}
$$

Similarly differentiation with respect to y yields

$$
z+y \frac{\partial z}{\partial y}=\frac{\frac{\partial z}{\partial y}}{x+z}
$$

from which we obtain

$$
\frac{\partial z}{\partial y}=\frac{z(x+z)}{1-y(x+z)}
$$

