# Math 253, Section 102, Fall 2006 

SAMPLE PROBLEMS FROM WEEK 2

Example 1 : Find the angle $\theta$ between the planes $P_{1}$ and $P_{2}$ with equations

$$
2 x+3 y-z=-3 \quad \text { and } \quad 4 x+5 y+z=1 \text { respectively. }
$$

Then write the equation of their line of intersection $L$ in symmetric form.

Solution. The angle between two planes is the angle between their normals. The normal vectors to $P_{1}$ and $P_{2}$ are given by $\mathbf{n}_{1}=(2,3,-1)$ and $\mathbf{n}_{2}=(4,5,1)$ respectively. Therefore

$$
\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{22}{\sqrt{14} \sqrt{42}}
$$

Hence $\theta=\cos ^{-1}\left(\frac{11}{21} \sqrt{3}\right) \approx 24.87^{\circ}$.
To find the equation of $L$, we need to find a point on $L$ and its direction. To find a point, we can substitute an arbitrarily chosen value of $x$ into the equations of the given planes and then solve the resulting equations for $y$ and $z$. With $x=1$ we get the equations

$$
\begin{aligned}
& 2+3 y-z=-3 \\
& 4+5 y+z=1 .
\end{aligned}
$$

The common solution is $y=-1, z=2$. Thus the point $(1,,-1,2)$ lies on the line $L$. Next we need to find a vector $\mathbf{v}$ parallel to $L$. The vectors $\mathbf{n}_{1}$ and $\mathbf{n}_{2}$ are both normal to $L$ (which lies on both $P_{1}$ and $P_{2}$ ), therefore

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=(8,-6,-2) .
$$

We therefore have the symmetric equation

$$
\frac{x-1}{8}=\frac{y+1}{-6}=\frac{z-2}{-2}
$$

Example 2: Prove that the lines $L_{1}$ and $L_{2}$ given by

$$
x-1=\frac{(y+1)}{2}=z-2 \quad \text { and } \quad x-2=\frac{(y-2)}{3}=\frac{(z-4)}{2}
$$

intersect. Find an equation of the only plane that contains them both.

Solution. Solving the equation of the two lines, we find that $P(1,-1,2)$ is the unique point that lies on both lines. We now need to find the normal direction to the plane that contain $L_{1}$ and $L_{2}$. Since $L_{1}$ and $L_{2}$ have directions parallel to $\mathbf{v}_{1}=(1,2,1)$ and $\mathbf{v}_{2}=(1,3,2)$ respectively, the direction $\mathbf{n}$ perpendicular to both $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$, and therefore,

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=(1,-1,1) .
$$

The equation of the plane containing $L_{1}$ and $L_{2}$ is therefore

$$
1(x-1)-y(y+1)+2(z-1)=0, \quad \text { or } x-y+z=4 .
$$

Example 3 : A child pulls a rope attached to a sled along the ground. The rope is inclined at an angle of $30^{\circ}$ from the ground. If the child exerts a constant force of 20 lb , how much work is done in pulling the sled a distance of one mile?

Solution. We are given that $|\mathbf{F}|=20(\mathrm{lb})$ and $|\mathbf{D}|=5280(\mathrm{ft})$, where $\mathbf{F}$ and $\mathbf{D}$ denote force and displacement respectively. The work is given by

$$
W=\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos 30^{\circ}=(20)(5280) \frac{\sqrt{3}}{2} \approx 91452(\text { ft.lb })
$$

Example 4 : Show that the points $A(1,-1,2), B(2,0,1), C(3,2,0)$ and $D(5,4,-2)$ lie on the same plane.

Solution. Recall that the scalar triple product $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$ equals the volume of a parallelepiped with edges given by $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$. If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are coplanar (i.e., lie on the same plane), then the parallelepiped they generate has volume zero.

Therefore, in order to show that $A, B, C$ and $D$ lie on the same plane, it suffices to show that $|\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})|=0$. We compute

$$
\overrightarrow{A B}=(1,1,-1), \overrightarrow{A C}=(2,3,-1) \text { and } \overrightarrow{A D}=(4,5,-1),
$$

which yields

$$
|\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})|=\left|\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -2 \\
4 & 5 & -4
\end{array}\right|=1 \cdot(-2)-1.0+(-1) \cdot(-2)=0
$$

Example 5 :Find the shortest distance between points on the line $L_{1}$ with paramtric equations

$$
x=7+2 t, \quad y=11-5 t, \quad z=13+6 t
$$

and the line $L_{2}$ on intersection of the planes $3 x-2 y+4 z=10$ and $5 x+3 y-2 z=15$.
Solution. First check that the two lines are skew, i.e., they neither intersect nor are they parallel (we worked out a problem like this in class). So it makes sense to find the distance between them. In order to find the shortest distance between $L_{1}$ and $L_{2}$, we need to find two points $P_{1}$ and $P_{2}$ on $L_{1}$ and $L_{2}$ respectively, then project $\overrightarrow{P_{1} P_{2}}$ in the direction $\mathbf{n}$ perpendicular to both $L_{1}$ and $L_{2}$. In other words,

$$
\text { distance between } L_{1} \text { and } L_{2}=\operatorname{comp}_{\mathbf{n}}\left(\overrightarrow{P_{1} P_{2}}\right)
$$

There can be many choices for $P_{1}$, but choosing $t=0$ we obtain $P_{1}=$ $(7,11,13)$. The direction of $L_{1}$ is given by $\mathbf{v}_{1}=(2,-5,6)$. Similarly, setting $x=4$ in the two equations for $L_{2}$ we obtain $P_{2}=(4,-3,-2)$. Check using your favorite method that the direction of $L_{2}$ is parallel to $\mathbf{v}_{2}=(-8,26,19)$. Therefore $\overrightarrow{P_{1} P_{2}}=(-3,-14,-15)$, and $\mathbf{n}=$ $\mathbf{v}_{1} \times \mathbf{v}_{2}=(-251,-86,12)$. Hence the distance between the two lines is

$$
D=\frac{\left|\overrightarrow{P_{1} P_{2}} \cdot \mathbf{n}\right|}{|\mathbf{n}|}=\frac{1777}{\sqrt{70541}}
$$

