The Simplex Method in Matrix Notation

This is also known as "the Revised Simplex Method". Matrix Notation gives ...

- 1. Conceptual clarity on stuff we know;
- 2. Computational accuracy and efficiency; and
- 3. Streamlined access to some new material (like sensitivity analysis).

Setup—Standard Equality-Style Problem. A matrix $A \in \mathbb{R}^{m \times n}$ is given, along with vectors $\mathbf{b} \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

(P)
$$\max \left\{ \mathbf{c}^T \mathbf{x} : A \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \right\}$$

Always assume A has linearly independent rows. This requires $m \leq n$.

Geometric Interpretation. Label the *n* columns of matrix *A*:

$$A = \left[\mathbf{a}^{(1)} \mid \mathbf{a}^{(2)} \mid \cdots \mid \mathbf{a}^{(n)} \right].$$

Given some $\mathbf{x} \in \mathbb{R}^n$, recognize

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}^{(1)} \mid \mathbf{a}^{(2)} \mid \cdots \mid \mathbf{a}^{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}^{(1)} + x_2 \mathbf{a}^{(2)} + \cdots + x_n \mathbf{a}^{(n)}.$$

That's a linear combination of cols from A. So, "Solve for x in $A\mathbf{x} = \mathbf{b}$ " means, "Express the given vector b as a linear combination of the cols in A." Each col is in \mathbb{R}^m , and we have n cols to choose between (with $n \ge m$). For a *basic solution*, pick any m lin indep cols, call them the basis (truly a basis for \mathbb{R}^m , the space containing the given rhs **b**), and use only those. That's a "basic solution (BS) for $A\mathbf{x} = \mathbf{b}$ "; there may be several of these.

Each component c_j in vector $c \in \mathbb{R}^n$ tells the reward (if $c_j > 0$) or penalty (if $c_j < 0$) for including column $\mathbf{a}^{(j)}$ in the representation.

Simplex Dictionary. Pick any *m* linearly independent columns from *A*. Record their subscripts in a set \mathcal{B} . Call these the basis. Permute/clump selected cols into square matrix *B* (size $m \times m$). Symbolic decomposition

$$A \stackrel{\text{def}}{=} [A_{\mathcal{B}} \mid A_{\mathcal{N}}] \stackrel{\text{def}}{=} [B \mid N], \qquad \mathbf{x} \stackrel{\text{def}}{=} \left[\frac{\mathbf{x}_{\mathcal{B}}}{\mathbf{x}_{\mathcal{N}}} \right], \qquad c \stackrel{\text{def}}{=} \left[\frac{\mathbf{c}_{\mathcal{B}}}{\mathbf{c}_{\mathcal{N}}} \right],$$

leads to

$$A\mathbf{x} = \mathbf{b} \iff B\mathbf{x}_{\mathcal{B}} = \mathbf{b} - N\mathbf{x}_{\mathcal{N}} \iff \mathbf{x}_{\mathcal{B}} = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_{\mathcal{N}}$$

Track the objective:

$$f = \mathbf{c}^T \mathbf{x} = \mathbf{c}_{\mathcal{B}}^T \mathbf{x}_{\mathcal{B}} + \mathbf{c}_{\mathcal{N}}^T \mathbf{x}_{\mathcal{N}} = \mathbf{c}_{\mathcal{B}}^T \left(B^{-1} \mathbf{b} - B^{-1} N \mathbf{x}_{\mathcal{N}} \right) + \mathbf{c}_{\mathcal{N}}^T \mathbf{x}_{\mathcal{N}}$$
$$= \mathbf{c}_{\mathcal{B}}^T B^{-1} \mathbf{b} - \left(\mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T \right) \mathbf{x}_{\mathcal{N}}.$$

New dictionary

$$\frac{f = \mathbf{c}_{\mathcal{B}}^T B^{-1} \mathbf{b} - (\mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T) \mathbf{x}_{\mathcal{N}}}{\mathbf{x}_{\mathcal{B}} = B^{-1} \mathbf{b} - B^{-1} N \mathbf{x}_{\mathcal{N}}}.$$

... an algebraic structure containing symbols x_1, \ldots, x_n, f together with a bunch of numbers. Substituting $\mathbf{x}_{\mathcal{N}} = \mathbf{0}$ determines the numerical values of $\mathbf{x}_{\mathcal{B}}^* = B^{-1}\mathbf{b}$ in a Basic Solution for $A\mathbf{x} = \mathbf{b}$. It's nice when this is feasible, but the derivation above does not require that.

File "rsm2013", version of 13 Jun 2013, page 1.

Versatility. Imagine picking any values at all for the n-m elements of vector $\mathbf{x}_{\mathcal{N}}$. This dictionary shows the *m* components of $\mathbf{x}_{\mathcal{B}}$ you must use to satisfy $A\mathbf{x} = \mathbf{b}$ and the value of $f = \mathbf{c}^T \mathbf{x}$ that results when you do. (Feasibility is ignored.) Choosing $\mathbf{x}_{\mathcal{N}}^* = \mathbf{0}$ gives the basic solution $\mathbf{x}_{\mathcal{B}}^* = B^{-1}\mathbf{b}$ and the objective value $f^* = \mathbf{c}^T \mathbf{x}^* = \mathbf{c}_{\mathcal{B}}^T \mathbf{x}_{\mathcal{B}}^* = \mathbf{c}_{\mathcal{B}}^T B^{-1}\mathbf{b}$.

Optimality and Improvability. Suppose $\mathbf{x}_{\mathcal{B}}^* \geq 0$, so \mathbf{x}^* is feasible. Consider the row vector $\mathbf{z}_{\mathcal{N}}^T = (\mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T)$:

- If each component $z_i > 0$, every nonzero vector x_N will subtract a positive amount from f^* . So \mathbf{x}^* is the unique maximizer.
- If each component $z_i \ge 0$, no nonzero vector $\mathbf{x}_{\mathcal{N}}$ can add a positive amount to f^* . So x^* is a maximizer, but perhaps not unique.
- If some component $z_k < 0$, a positive value of component $(x_N)_k$ will make f increase. Improvement is possible, so we will pivot.

Pivot Selection. Suppose we have a feasible dictionary and the cost coefficient row $\mathbf{z}_{\mathcal{N}}^T = (\mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T)$ has a negative entry. Identify the associated column of A and call it $\mathbf{a}^{(E)}$. Notice $E \in \mathcal{N}$. Choosing $\mathbf{x}_{\mathcal{N}}(t)$ so that $x_E = t$ and $x_j = 0$ for all other $j \in \mathcal{N}$ leads to $N \mathbf{x}_{\mathcal{N}}(t) = t \mathbf{a}^{(E)}$. Track the values of current basic coefficient.

$$\mathbf{x}_{\mathcal{B}}(t) = B^{-1}\mathbf{b} - B^{-1}[t\mathbf{a}^{(E)}].$$
(**)

For many t this will have m nonzero entries. Pick the smallest $t \ge 0$ where one or more entry changes to 0: those entries identify the columns eligible to leave. Call the lucky value t^* .

Update. Swap entering col into basis; your chosen leaving col out; update coefficient vector using $\mathbf{x}_{E}^{*} = t^{*}$, other coeffs from (**).

Efficient Implementation. One never actually computes B^{-1} from B. (Sometimes B^{-1} is given on exams.) Instead, we solve linear systems as follows:

(i) To generate objective coefficients, introduce y to reorganize

$$\mathbf{c}_{\mathcal{B}}^T B^{-1} N = \mathbf{y}^T N$$
, as $\mathbf{y}^T = \mathbf{c}_{\mathcal{B}}^T B^{-1}$, i.e., $\mathbf{y}^T B = \mathbf{c}_{\mathcal{B}}^T$.

Find \mathbf{y} by solving a linear system.

(ii) In coefficient update, find $\mathbf{d} = B^{-1}\mathbf{a}^{(E)}$ by solving system

$$B\mathbf{d} = \mathbf{a}^{(E)}$$

Use tiny labels called "basis headers" to remember which cols are basic in each iteration. [Chvátal box 7.1, page 103.]

The Revised Simplex Method, Step by Step

Context. The Revised Simplex Method works on problems of this form:

(EqLP)
$$\max\left\{\mathbf{c}^T\mathbf{x} : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\right\}.$$

(Many problems can be put into this form.) Here a matrix A of shape $m \times n$ is given, along with (column) vectors $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$. We assume that A has linearly independent rows (so $m \leq n$).

Initialize. You need a feasible basis to get started. (Try to guess one; use an auxiliary "Phase One" step if guessing fails.) Let \mathcal{B} be the set of m subscripts that define the current basis; let \mathcal{N} be the set containing the n-m non-basic subscripts.

Partition. Use the sets of subscripts \mathcal{B} and \mathcal{N} to select columns from A and their corresponding rows of \mathbf{x}, \mathbf{c} :

$$A = \begin{bmatrix} A_{\mathcal{B}} & A_{\mathcal{N}} \end{bmatrix} = \begin{bmatrix} B & N \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} \mathbf{c}_{\mathcal{B}} \\ \mathbf{c}_{\mathcal{N}} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathcal{B}} \\ \mathbf{x}_{\mathcal{N}} \end{bmatrix}.$$

Matrix B has shape $m \times m$. It is certain to be invertible because the columns of A with indices in \mathcal{B} must be linearly independent. The dictionary is

$$\frac{f = \mathbf{c}_{\mathcal{B}}^T B^{-1} \mathbf{b} - \left(\mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T\right) \mathbf{x}_{\mathcal{N}}}{\mathbf{x}_{\mathcal{B}} = B^{-1} \mathbf{b} - B^{-1} N \mathbf{x}_{\mathcal{N}}}$$

The current BFS $\mathbf{x}^* \in \mathbb{R}^n$ has blocks $\mathbf{x}^*_{\mathcal{B}} = B^{-1}\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x}^*_{\mathcal{N}} = \mathbf{0} \in \mathbb{R}^{n-m}$.

Select Entering Col. Scan $\mathbf{z}_{\mathcal{N}}^T = \mathbf{c}_{\mathcal{B}}^T B^{-1} N - \mathbf{c}_{\mathcal{N}}^T$ for negative entries. To find $\mathbf{z}_{\mathcal{N}}$,

- (i) Find $\mathbf{y}^T = \mathbf{c}_{\mathcal{B}}^T B^{-1}$ (a row vector) by solving the system $\mathbf{y}^T B = \mathbf{c}_{\mathcal{B}}^T$.
- (ii) Build $\mathbf{z}_{\mathcal{N}}^T = \mathbf{y}^T N \mathbf{c}_{\mathcal{N}}^T$.

If no entry is negative, current BFS is optimal. Stop. If negative entries exist, pick one. It labels a suitable "entering column" which has an original index E. The column itself is $\mathbf{a}^{(E)}$, with coefficient x_E .

Select Leaving Col. Set nonbasic coefficient $x_E = t$, while keeping all other nonbasic vars at 0. This gives the vector $\mathbf{x}_{\mathcal{N}} = \mathbf{x}_{\mathcal{N}}(t)$ exactly one nonzero entry, with

$$N\mathbf{x}_{\mathcal{N}}(t) = t\mathbf{a}^{(E)}$$

Watch the coefficients of the current basis change as $t \ge 0$ increases:

$$\mathbf{x}_{\mathcal{B}}(t) = \mathbf{x}_{\mathcal{B}}(0) - B^{-1}N\mathbf{x}_{\mathcal{N}}(t) = \mathbf{x}_{\mathcal{B}}^* - tB^{-1}\mathbf{a}^{(E)} = \mathbf{x}_{\mathcal{B}}^* - t\mathbf{d}, \qquad (**)$$

where **d** is found by solving $B\mathbf{d} = \mathbf{a}^{(E)}$. Let t^* denote the smallest $t \ge 0$ for which $\mathbf{x}_{\mathcal{B}}(t)$ has a zero entry. Each zero entry in $\mathbf{x}_{\mathcal{B}}(t^*)$ identifies a column in the current basis that may leave. Pick one; use L as a symbol for the leaving index. Then the leaving column is $\mathbf{a}^{(L)}$. (If $\mathbf{x}_{\mathcal{B}}(t)$ never develops a zero entry, sending $t \to \infty$ proves problem is unbounded. Report that fact and stop.)

Update. Indices E and L are column numbers. At the beginning, $E \in \mathcal{N}$ and $L \in \mathcal{B}$. Swap these two. Then go back to original problem and make the new block matrices $B = A_{\mathcal{B}}$, $N = A_{\mathcal{N}}$, and cost vectors $\mathbf{c}_{\mathcal{B}}^T$, $\mathbf{c}_{\mathcal{N}}^T$. Update the BFS \mathbf{x}^* by noting $\mathbf{x}_{\mathcal{N}}^* = \mathbf{0}$; m-1 entries for $\mathbf{x}_{\mathcal{B}}(t^*)$ appear in (**); and $x_E = t^*$. Loop back to "Select Entering Col".

Example. Here are some RSM pivots using Bland's rule for the problem

maximize
$$f = 3x_1 + 2x_2 + 4x_3$$

subject to $x_1 + x_2 + 2x_3 + x_4 = 4$
 $2x_1 + 3x_3 + x_5 = 5$
 $2x_1 + x_2 + 3x_3 + x_6 = 7$
 $x_i \ge 0$

Solution. Setup:

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 2 & 0 & 3 & 0 & 1 & 0 \\ 2 & 1 & 3 & 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix},$$
$$\mathbf{c}^{T} = \begin{bmatrix} 3 & 2 & 4 & 0 & 0 & 0 \end{bmatrix}.$$

An easy BFS comes from choosing $\mathcal{B} = \{4, 5, 6\}$, so $\mathcal{N} = \{1, 2, 3\}$, giving

$$B = \begin{pmatrix} x_4 & x_5 & x_6 & & x_1 & x_2 & x_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad N = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$
$$\mathbf{c}_{\mathcal{B}}^T = \begin{pmatrix} x_4 & x_5 & x_6 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \mathbf{c}_{\mathcal{N}}^T = \begin{pmatrix} x_1 & x_2 & x_3 \\ 3 & 2 & 4 \end{pmatrix},$$
$$\mathbf{x}_{\mathcal{B}}^* = B^{-1}\mathbf{b} = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}, \qquad f^* = 0.$$

First iteration:

- (1) Select entering variable using objective coeffs $\mathbf{c}_{\mathcal{N}}^T \mathbf{c}_{\mathcal{B}}^T B^{-1} N$.
 - (a) Solve for **y** in

$$\mathbf{y}^T = \mathbf{c}_{\mathcal{B}}^T B^{-1}, \quad \text{i.e.,} \quad \mathbf{y}^T B = \mathbf{c}_{\mathcal{B}}^T.$$

Easy:
$$\mathbf{y}^T = \mathbf{c}_{\mathcal{B}}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
.

(b) Write and scan vector

$$\mathbf{z}_{\mathcal{N}}^{T} = \mathbf{y}^{T} N - \mathbf{c}_{\mathcal{N}}^{T} = -\mathbf{c}_{\mathcal{N}} = \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ (-3 & -2 & -4 \end{pmatrix}.$$

Select x_1 to enter (Bland's Rule). So E = 1, $\mathbf{a}^{(E)} = \mathbf{a}^{(1)}$, $x_E = x_1$.

(2) Select leaving variable, noting $Nx_{\mathcal{N}} = t\mathbf{a}^{(\mathrm{in})} = t\mathbf{a}^{(1)}$ so $\mathbf{x}_{\mathcal{B}}(t) = \mathbf{x}_{\mathcal{B}}(0) - td$.

(a) Solve for **d** in

$$\mathbf{d} = B^{-1} \mathbf{a}^{(1)}, \quad \text{i.e.,} \quad B\mathbf{d} = \mathbf{a}^{(1)}.$$

Easy: $d = a^{(1)}$.

(b) Monitor

$$\mathbf{x}_{\mathcal{B}}(t) = \begin{array}{c} x_4 \\ x_5 \\ x_6 \end{array} \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix} - t \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{array}{c} x_4 \\ x_5 \\ x_6 \end{pmatrix} \begin{pmatrix} 4-t \\ 5-2t \\ 7-2t \end{pmatrix}.$$

As t increases, $t^* = 5/2$ is the smallest value where $\mathbf{x}_{\mathcal{B}}(t)$ picks up a zero component. (Smallest choice makes sure $\mathbf{x}_{\mathcal{B}}(t^*)$ stays feasible.) Variable x_5 labels that slot, so it will leave. Write L = 5, so $\mathbf{x}_L = x_5$, $\mathbf{a}^{(L)} = \mathbf{a}^{(5)}$.

- (3) Update everything.
 - (a) New BFS refers to sets \mathcal{B} and \mathcal{N} above:

$$\mathbf{x}^{*}(t^{*}) = \begin{bmatrix} x_{\mathcal{B}}(t^{*}) \\ x_{\mathcal{N}}(t^{*}) \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix} \begin{pmatrix} 5/2 \\ 0 \\ 0 \\ 3/2 \\ 0 \\ 2 \end{pmatrix}.$$

- (b) New basis selection sets $\mathcal{B} = \{1, 4, 6\}$ and $\mathcal{N} = \{2, 3, 5\}$.
- (c) New partitioned matrices

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \qquad N = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 1 & 3 & 0 \end{pmatrix},$$
$$\mathbf{c}_{\mathcal{B}}^{T} = \begin{pmatrix} x_{1} & x_{4} & x_{6} \\ 3 & 0 & 0 \end{pmatrix}, \qquad \mathbf{c}_{\mathcal{N}}^{T} = \begin{pmatrix} x_{2} & x_{3} & x_{5} \\ 2 & 4 & 0 \end{pmatrix},$$
$$\mathbf{x}_{\mathcal{B}}^{*} = B^{-1}\mathbf{b} = \begin{pmatrix} x_{1} \\ x_{4} \\ x_{6} \\ 2 \end{pmatrix}, \qquad f^{*} = 15/2.$$

Second iteration:

- (1) Select entering variable.
 - (a) Solve for y in

$$\mathbf{y}^{T} = \mathbf{c}_{\mathcal{B}}^{T} B^{-1}, \quad \text{i.e.,} \quad \mathbf{y}^{T} B = \mathbf{c}_{\mathcal{B}}^{T},$$

i.e., $\begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{pmatrix} x_{1} & x_{4} & x_{6} \\ 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{1} & x_{4} & x_{6} \\ 3 & 0 & 0 \end{pmatrix}.$

Get
$$y_1 = 0, y_3 = 0, y_2 = 3/2; \mathbf{y}^T = \begin{bmatrix} 0 & 3/2 & 0 \end{bmatrix}$$
.

File "rsm2013", version of 13 Jun 2013, page 5.

(b) Write and scan vector

$$\mathbf{z}_{\mathcal{N}}^{T} = \mathbf{y}^{T} N - \mathbf{c}_{\mathcal{N}}^{T} = \begin{bmatrix} 0 & 3/2 & 0 \end{bmatrix} \begin{pmatrix} x_{2} & x_{3} & x_{5} \\ 1 & 2 & 0 \\ 0 & 3 & 1 \\ 1 & 3 & 0 \end{pmatrix} - \begin{pmatrix} x_{2} & x_{3} & x_{5} \\ 2 & 4 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} x_{2} & x_{3} & x_{5} \\ -2 & 1/2 & 3/2 \end{pmatrix}.$$

Select x_2 to enter (Bland's Rule). Thus E = 2, $\mathbf{a}^{(E)} = \mathbf{a}^{(2)}$, $x_E = x_2$. (2) Select Leaving Variable, noting $\mathbf{x}_{\mathcal{B}}(t) = \mathbf{x}_{\mathcal{B}}(0) - td$.

(a) Solve for **d** in

$$\mathbf{d} = B^{-1} \mathbf{a}^{(in)}, \quad \text{i.e.,} \quad B \mathbf{d} = \mathbf{a}^{(2)}$$

i.e.,
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Middle row gives $d_1 = 0$, then $d_2 = 1$ and $d_3 = 1$. So $\mathbf{d} = (0, 1, 1)$. (b) Monitor

$$\mathbf{x}_{\mathcal{B}}(t) = \begin{array}{c} x_1 \\ x_4 \\ x_6 \end{array} \begin{pmatrix} 5/2 \\ 3/2 \\ 2 \end{array} \end{pmatrix} - t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{array}{c} x_1 \\ x_4 \\ x_6 \end{array} \begin{pmatrix} 5/2 \\ 3/2 - t \\ 2 - t \end{pmatrix}$$

As t increases, $t^* = 3/2$ is the smallest value where $\mathbf{x}_{\mathcal{B}}(t)$ picks up a zero component. Variable x_4 labels that slot, so it will leave. Write L = 4, $x_L = x_4$, $\mathbf{a}^{(L)} = \mathbf{a}^{(4)}$.

- (3) Update everything.
 - (a) New BFS refers to sets \mathcal{B} and \mathcal{N} above:

$$\mathbf{x}^{*}(t^{*}) = \begin{bmatrix} \mathbf{x}_{\mathcal{B}}(t^{*}) \\ \mathbf{x}_{\mathcal{N}}(t^{*}) \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix} \begin{pmatrix} 5/2 \\ 3/2 \\ 0 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}$$

(b) New basis selection sets $\mathcal{B} = \{1, 2, 6\}$ and $\mathcal{N} = \{3, 4, 5\}$.

(c) New partitioned matrices

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix}, \qquad N = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 3 & 0 & 0 \end{pmatrix},$$
$$\mathbf{c}_{\mathcal{B}}^{T} = \begin{pmatrix} x_{1} & x_{2} & x_{6} \\ 3 & 2 & 0 \end{pmatrix}, \qquad \mathbf{c}_{\mathcal{N}}^{T} = \begin{pmatrix} x_{3} & x_{4} & x_{5} \\ 4 & 0 & 0 \end{pmatrix},$$
$$\mathbf{x}_{\mathcal{B}}^{*} = B^{-1}\mathbf{b} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{6} \end{pmatrix}, \qquad f^{*} = 25/2.$$

Third iteration:

- (1) Select entering variable.
 - (a) Solve for **y** in

$$\mathbf{y}^{T} = \mathbf{c}_{\mathcal{B}}^{T} B^{-1}, \text{ i.e., } \mathbf{y}^{T} B = \mathbf{c}_{\mathcal{B}}^{T},$$

i.e., $\begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{pmatrix} x_{1} & x_{2} & x_{6} \\ 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} x_{1} & x_{2} & x_{6} \\ 3 & 2 & 0 \end{pmatrix}$

Get $y_3 = 0$, then $y_1 = 2$, then $y_2 = 1/2$: $\mathbf{y}^T = \begin{bmatrix} 2 & 1/2 & 0 \end{bmatrix}$. (b) Write and scan vector

$$\mathbf{z}_{\mathcal{N}}^{T} = \mathbf{y}^{T} N - \mathbf{c}_{\mathcal{N}}^{T} = \begin{bmatrix} 2 & 1/2 & 0 \end{bmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 3 & 0 & 0 \end{pmatrix} - \begin{pmatrix} x_{3} & x_{4} & x_{5} \\ 4 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} x_{3} & x_{4} & x_{5} \\ 3/2 & 2 & 1/2 \end{pmatrix}.$$

All components are positive, so the current BFS is the UNIQUE MAXIMIZER! To report, recall the full solution vector $\mathbf{x}^*(t^*)$ shown explicitly in part 3(a) of the Second Iteration above. ////