
The Simplex Method in Matrix Notation

This is also known as “the Revised Simplex Method”. Matrix Notation gives . . .

1. Conceptual clarity on stuff we know;

2. Computational accuracy and efficiency; and

3. Streamlined access to some new material (like sensitivity analysis).

Setup—Standard Equality-Style Problem. A matrix A ∈ R
m×n is given, along with vectors

b ∈ R
m, c ∈ R

n.
(P) max

{

cT x : Ax = b, x ≥ 0
}

.

Always assume A has linearly independent rows. This requires m ≤ n.

Geometric Interpretation. Label the n columns of matrix A:

A =
[

a(1) | a(2) | · · · | a(n)
]

.

Given some x ∈ R
n, recognize

Ax =
[

a(1) | a(2) | · · · | a(n)
]









x1

x2
...

xn









= x1a
(1) + x2a

(2) + · · · + xna(n).

That’s a linear combination of cols from A. So, “Solve for x in Ax = b” means, “Express the given
vector b as a linear combination of the cols in A.” Each col is in R

m, and we have n cols to choose
between (with n ≥ m). For a basic solution, pick any m lin indep cols, call them the basis (truly
a basis for R

m, the space containing the given rhs b), and use only those. That’s a “basic solution
(BS) for Ax = b”; there may be several of these.

Each component cj in vector c ∈ R
n tells the reward (if cj > 0) or penalty (if cj < 0) for

including column a(j) in the representation.

Simplex Dictionary. Pick any m linearly independent columns from A. Record their subscripts
in a set B. Call these the basis. Permute/clump selected cols into square matrix B (size m × m).
Symbolic decomposition

A
def
= [AB | AN]

def
= [B | N], x

def
=

[

xB

xN

]

, c
def
=

[

cB

cN

]

,

leads to
Ax = b ⇐⇒ BxB = b − NxN ⇐⇒ xB = B−1b− B−1NxN .

Track the objective:

f = cT x = cT
BxB + cT

NxN = cT
B

(

B−1b− B−1NxN

)

+ cT
NxN

= cT
BB−1b−

(

cT
BB−1N − cT

N

)

xN .

New dictionary
f = cT

BB−1b −
(

cT
BB−1N − cT

N

)

xN

xB = B−1b − B−1NxN .

. . . an algebraic structure containing symbols x1, . . . , xn, f together with a bunch of numbers.
Substituting xN = 0 determines the numerical values of x∗

B = B−1b in a Basic Solution for
Ax = b. It’s nice when this is feasible, but the derivation above does not require that.

File “rsm2013”, version of 13 Jun 2013, page 1. Typeset at 21:11 June 13, 2013.

2 PHILIP D. LOEWEN

Versatility. Imagine picking any values at all for the n−m elements of vector xN . This dictionary
shows the m components of xB you must use to satisfy Ax = b and the value of f = cT x that
results when you do. (Feasibility is ignored.) Choosing x∗

N = 0 gives the basic solution x∗
B = B−1b

and the objective value f∗ = cT x∗ = cT
Bx∗

B = cT
BB−1b.

Optimality and Improvability. Suppose x∗
B ≥ 0, so x∗ is feasible. Consider the row vector

zT
N = (cT

BB−1N − cT
N):

• If each component zi > 0, every nonzero vector xN will subtract a positive amount from f∗.
So x∗ is the unique maximizer.

• If each component zi ≥ 0, no nonzero vector xN can add a positive amount to f∗. So x∗ is a
maximizer, but perhaps not unique.

• If some component zk < 0, a positive value of component (xN)k will make f increase. Im-
provement is possible, so we will pivot.

Pivot Selection. Suppose we have a feasible dictionary and the cost coefficient row zT
N =

(cT
BB−1N − cT

N) has a negative entry. Identify the associated column of A and call it a(E). Notice
E ∈ N . Choosing xN (t) so that xE = t and xj = 0 for all other j ∈ N leads to NxN (t) = ta(E).
Track the values of current basic coeffs:

xB(t) = B−1b− B−1[ta(E)]. (∗∗)

For many t this will have m nonzero entries. Pick the smallest t ≥ 0 where one or more entry
changes to 0: those entries identify the columns eligible to leave. Call the lucky value t∗.

Update. Swap entering col into basis; your chosen leaving col out; update coefficient vector using
x∗

E = t∗, other coeffs from (∗∗).

Efficient Implementation. One never actually computes B−1 from B. (Sometimes B−1 is given
on exams.) Instead, we solve linear systems as follows:

(i) To generate objective coefficients, introduce y to reorganize

cT
BB−1N = yT N, as yT = cT

BB−1, i.e., yT B = cT
B .

Find y by solving a linear system.

(ii) In coefficient update, find d = B−1a(E) by solving system

Bd = a(E).

Use tiny labels called “basis headers” to remember which cols are basic in each iteration.
[Chvátal box 7.1, page 103.]

File “rsm2013”, version of 13 Jun 2013, page 2. Typeset at 21:11 June 13, 2013.

3

The Revised Simplex Method, Step by Step

Context. The Revised Simplex Method works on problems of this form:

(EqLP) max
{

cT x : Ax = b, x ≥ 0
}

.

(Many problems can be put into this form.) Here a matrix A of shape m × n is given, along with
(column) vectors c ∈ R

n, b ∈ R
m. We assume that A has linearly independent rows (so m ≤ n).

Initialize. You need a feasible basis to get started. (Try to guess one; use an auxiliary “Phase
One” step if guessing fails.) Let B be the set of m subscripts that define the current basis; let N
be the set containing the n − m non-basic subscripts.

Partition. Use the sets of subscripts B and N to select columns from A and their corresponding
rows of x, c:

A = [AB AN] = [B N] , c =

[

cB
cN

]

, x =

[

xB

xN

]

.

Matrix B has shape m×m. It is certain to be invertible because the columns of A with indices in
B must be linearly independent. The dictionary is

f = cT
BB−1b −

(

cT
BB−1N − cT

N

)

xN

xB = B−1b − B−1NxN

The current BFS x∗ ∈ R
n has blocks x∗

B = B−1b ∈ R
m, x∗

N = 0 ∈ R
n−m.

Select Entering Col. Scan zT
N = cT

BB−1N − cT
N for negative entries. To find zN ,

(i) Find yT = cT
BB−1 (a row vector) by solving the system yT B = cT

B .

(ii) Build zT
N = yT N − cT

N .

If no entry is negative, current BFS is optimal. Stop. If negative entries exist, pick one. It labels a
suitable “entering column” which has an original index E. The column itself is a(E), with coefficient
xE .

Select Leaving Col. Set nonbasic coefficient xE = t, while keeping all other nonbasic vars at 0.
This gives the vector xN = xN (t) exactly one nonzero entry, with

NxN (t) = ta(E).

Watch the coefficients of the current basis change as t ≥ 0 increases:

xB(t) = xB(0) − B−1NxN (t) = x∗
B − tB−1a(E) = x∗

B − td, (∗∗)

where d is found by solving Bd = a(E). Let t∗ denote the smallest t ≥ 0 for which xB(t) has a zero
entry. Each zero entry in xB(t∗) identifies a column in the current basis that may leave. Pick one;
use L as a symbol for the leaving index. Then the leaving column is a(L). (If xB(t) never develops
a zero entry, sending t → ∞ proves problem is unbounded. Report that fact and stop.)

Update. Indices E and L are column numbers. At the beginning, E ∈ N and L ∈ B. Swap these
two. Then go back to original problem and make the new block matrices B = AB, N = AN , and
cost vectors cT

B , cT
N . Update the BFS x∗ by noting x∗

N = 0; m−1 entries for xB(t∗) appear in (∗∗);
and xE = t∗. Loop back to “Select Entering Col”.

File “rsm2013”, version of 13 Jun 2013, page 3. Typeset at 21:11 June 13, 2013.

4 PHILIP D. LOEWEN

Example. Here are some RSM pivots using Bland’s rule for the problem

maximize f = 3x1 + 2x2 + 4x3

subject to x1 + x2 + 2x3 + x4 = 4

2x1 + 3x3 + x5 = 5

2x1 + x2 + 3x3 + x6 = 7

xj ≥ 0

Solution. Setup:

A =





1 1 2 1 0 0
2 0 3 0 1 0
2 1 3 0 0 1



 , b =





4
5
7



 ,

cT = [3 2 4 0 0 0] .

An easy BFS comes from choosing B = {4, 5, 6}, so N = {1, 2, 3}, giving

B =







x4 x5 x6

1 0 0

0 1 0

0 0 1






, N =







x1 x2 x3

1 1 2

2 0 3

2 1 3






,

cT
B =

(

x4 x5 x6

0 0 0

)

, cT
N =

(

x1 x2 x3

3 2 4

)

,

x∗
B = B−1b =







x4 4

x5 5

x6 7






, f∗ = 0.

First iteration:

(1) Select entering variable using objective coeffs cT
N − cT

BB−1N .

(a) Solve for y in

yT = cT
BB−1, i.e., yT B = cT

B .

Easy: yT = cT
B = [0 0 0].

(b) Write and scan vector

zT
N = yT N − cT

N = −cN =
(

x1 x2 x3

−3 −2 −4
)

.

Select x1 to enter (Bland’s Rule). So E = 1, a(E) = a(1), xE = x1.

(2) Select leaving variable, noting NxN = ta(in) = ta(1) so xB(t) = xB(0) − td.

(a) Solve for d in

d = B−1a(1), i.e., Bd = a(1).

Easy: d = a(1).

File “rsm2013”, version of 13 Jun 2013, page 4. Typeset at 21:11 June 13, 2013.

5

(b) Monitor

xB(t) =





x4 4
x5 5
x6 7



 − t





1
2
2



 =





x4 4 − t
x5 5 − 2t
x6 7 − 2t



.

As t increases, t∗ = 5/2 is the smallest value where xB(t) picks up a zero component.
(Smallest choice makes sure xB(t∗) stays feasible.) Variable x5 labels that slot, so it will
leave. Write L = 5, so xL = x5, a(L) = a(5).

(3) Update everything.

(a) New BFS refers to sets B and N above:

x∗(t∗) =

[

xB(t∗)

xN (t∗)

]

=

















x1 5/2
x2 0
x3 0
x4 3/2
x5 0
x6 2

















.

(b) New basis selection sets B = {1, 4, 6} and N = {2, 3, 5}.

(c) New partitioned matrices

B =







x1 x4 x6

1 1 0

2 0 0

2 0 1






, N =







x2 x3 x5

1 2 0

0 3 1

1 3 0






,

cT
B =

(

x1 x4 x6

3 0 0

)

, cT
N =

(

x2 x3 x5

2 4 0

)

,

x∗
B = B−1b =







x1 5/2

x4 3/2

x6 2






, f∗ = 15/2.

Second iteration:

(1) Select entering variable.

(a) Solve for y in

yT = cT
BB−1, i.e., yT B = cT

B ,

i.e., [y1 y2 y3]







x1 x4 x6

1 1 0

2 0 0

2 0 1






=

(

x1 x4 x6

3 0 0

)

.

Get y1 = 0, y3 = 0, y2 = 3/2: yT = [0 3/2 0].

File “rsm2013”, version of 13 Jun 2013, page 5. Typeset at 21:11 June 13, 2013.

6 PHILIP D. LOEWEN

(b) Write and scan vector

zT
N = yT N − cT

N = [0 3/2 0]







x2 x3 x5

1 2 0

0 3 1

1 3 0






−

(

x2 x3 x5

2 4 0

)

=
(

x2 x3 x5

−2 1/2 3/2

)

.

Select x2 to enter (Bland’s Rule). Thus E = 2, a(E) = a(2), xE = x2.

(2) Select Leaving Variable, noting xB(t) = xB(0) − td.

(a) Solve for d in

d = B−1a(in), i.e., Bd = a(2)

i.e.,







x1 x4 x6

1 1 0

2 0 0

2 0 1











d1

d2

d3



 =





1
0
1



 .

Middle row gives d1 = 0, then d2 = 1 and d3 = 1. So d = (0, 1, 1).

(b) Monitor

xB(t) =





x1 5/2
x4 3/2
x6 2



 − t





0
1
1



 =





x1 5/2
x4 3/2 − t
x6 2 − t





As t increases, t∗ = 3/2 is the smallest value where xB(t) picks up a zero component.
Variable x4 labels that slot, so it will leave. Write L = 4, xL = x4, a(L) = a(4).

(3) Update everything.

(a) New BFS refers to sets B and N above:

x∗(t∗) =

[

xB(t∗)

xN (t∗)

]

=

















x1 5/2
x2 3/2
x3 0
x4 0
x5 0
x6 1/2

















(b) New basis selection sets B = {1, 2, 6} and N = {3, 4, 5}.

File “rsm2013”, version of 13 Jun 2013, page 6. Typeset at 21:11 June 13, 2013.

7

(c) New partitioned matrices

B =







x1 x2 x6

1 1 0

2 0 0

2 1 1






, N =







x3 x4 x5

2 1 0

3 0 1

3 0 0






,

cT
B =

(

x1 x2 x6

3 2 0

)

, cT
N =

(

x3 x4 x5

4 0 0

)

,

x∗
B = B−1b =







x1 5/2

x2 3/2

x6 1/2






, f∗ = 25/2.

Third iteration:

(1) Select entering variable.

(a) Solve for y in

yT = cT
BB−1, i.e., yT B = cT

B ,

i.e., [y1 y2 y3]







x1 x2 x6

1 1 0

2 0 0

2 1 1






=

(

x1 x2 x6

3 2 0

)

.

Get y3 = 0, then y1 = 2, then y2 = 1/2: yT = [2 1/2 0].

(b) Write and scan vector

zT
N = yT N − cT

N = [2 1/2 0]







x3 x4 x5

2 1 0

3 0 1

3 0 0






−

(

x3 x4 x5

4 0 0

)

=
(

x3 x4 x5

3/2 2 1/2

)

.

All components are positive, so the current BFS is the UNIQUE MAXIMIZER! To report,
recall the full solution vector x∗(t∗) shown explicitly in part 3(a) of the Second Iteration
above. ////

File “rsm2013”, version of 13 Jun 2013, page 7. Typeset at 21:11 June 13, 2013.

