The Simplex Method in Matrix Notation

This is also known as “the Revised Simplex Method”. Matrix Notation gives ...
1. Conceptual clarity on stuff we know;
2. Computational accuracy and efficiency; and

3. Streamlined access to some new material (like sensitivity analysis).

Setup—Standard Equality-Style Problem. A matrix A € R™*™ is given, along with vectors
b e R™ ceR™
(P) max{c"x: Ax=b, x>0}.

Always assume A has linearly independent rows. This requires m < n.

Geometric Interpretation. Label the n columns of matrix A:

A= [au) 1a® | ... |a<n>}‘
Given some x € R”, recognize
T
x
Ax = [a(l) la® | ... | a(")] 2| —2a® 4 202@ 4 oo 2™,

T
That’s a linear combination of cols from A. So, “Solve for x in Ax = b” means, “Express the given
vector b as a linear combination of the cols in A.” Each col is in R™, and we have n cols to choose
between (with n > m). For a basic solution, pick any m lin indep cols, call them the basis (truly
a basis for R™, the space containing the given rhs b), and use only those. That’s a “basic solution
(BS) for Ax = b”; there may be several of these.

Each component ¢; in vector ¢ € R™ tells the reward (if ¢; > 0) or penalty (if ¢; < 0) for
including column a) in the representation.

Simplex Dictionary. Pick any m linearly independent columns from A. Record their subscripts
in a set B. Call these the basis. Permute/clump selected cols into square matrix B (size m X m).
Symbolic decomposition

def def det | XB def | ©B
A= [Ap | Ax] = [B | N, le—], czl—],
XN CN

leads to
Ax=b <= Bxg=b— Nxy <= xg=B 'b— B 'Nxy.

Track the objective:
f=c'x= chB + cf/xN = cg (B_lb — B_leN) + CK/XN
=cLB b — (chle — c;{[) XN -

New dictionary
f=cLtB b - (c"gB*lN — c;{[) XN

xp= DB 'b- B INx.
. an algebraic structure containing symbols z1,...,x,, f together with a bunch of numbers.
Substituting xn+ = 0 determines the numerical values of xj; = B~'b in a Basic Solution for

Ax = b. It’s nice when this is feasible, but the derivation above does not require that.
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2 PHIiLIP D. LOEWEN

Versatility. Imagine picking any values at all for the n —m elements of vector x,r. This dictionary
shows the m components of Xz you must use to satisfy Ax = b and the value of f = ¢”x that
results when you do. (Feasibility is ignored.) Choosing x}; = 0 gives the basic solution x3 = B ~'p

and the objective value f* = cTx* = ckxj = cf B~ 'b.

Optimality and Improvability. Suppose xj; > 0, so x* is feasible. Consider the row vector
T _ TB—IN _ T\,
z) = (c Cy):

e If each component z; > 0, every nonzero vector xx will subtract a positive amount from f*.
So x* is the unique maximizer.

e If each component z; > 0, no nonzero vector xa can add a positive amount to f*. So z* is a
maximizer, but perhaps not unique.

e If some component z; < 0, a positive value of component (x,r), will make f increase. Im-
provement is possible, so we will pivot.

Pivot Selection. Suppose we have a feasible dictionary and the cost coefficient row zf/ =
(cEB™IN — c}&) has a negative entry. Identify the associated column of A and call it a®). Notice
E € N. Choosing xx(t) so that zp =t and ; = 0 for all other j € A leads to Nxur(t) = tal®).
Track the values of current basic coeffs:

x5(t) = B~'b — B~ '[tal®)]. (s5)

For many ¢ this will have m nonzero entries. Pick the smallest ¢ > 0 where one or more entry
changes to 0: those entries identify the columns eligible to leave. Call the lucky value t*.

Update. Swap entering col into basis; your chosen leaving col out; update coefficient vector using
x}; = t*, other coeffs from (xx).

Efficient Implementation. One never actually computes B~! from B. (Sometimes B~ is given
on exams.) Instead, we solve linear systems as follows:

(i) To generate objective coefficients, introduce y to reorganize
cgB'N=y"'N, as y" =ctB™', ie, y'B=c}.

Find y by solving a linear system.

(ii) In coefficient update, find d = B~'a(¥) by solving system
Bd =a'®.

Use tiny labels called “basis headers” to remember which cols are basic in each iteration.
[Chvétal box 7.1, page 103.]

File “rsm2013”, version of 13 Jun 2013, page 2. Typeset at 21:11 June 13, 2013.



The Revised Simplex Method, Step by Step

Context. The Revised Simplex Method works on problems of this form:
(EqLP) max {c"x : Ax=b, x>0}.

(Many problems can be put into this form.) Here a matrix A of shape m x n is given, along with
(column) vectors ¢ € R, b € R™. We assume that A has linearly independent rows (so m < n).

Initialize. You need a feasible basis to get started. (Try to guess one; use an auxiliary “Phase
One” step if guessing fails.) Let B be the set of m subscripts that define the current basis; let A/
be the set containing the n — m non-basic subscripts.

Partition. Use the sets of subscripts B and A to select columns from A and their corresponding
rows of x, c:

Amtan a=1s ¥ =[] x=[x]

Matrix B has shape m x m. It is certain to be invertible because the columns of A with indices in
B must be linearly independent. The dictionary is
f=cEkB b - (ch_lN — C}\—‘[) XN
XB = B_lb— B_INX_/\/’

The current BFS x* € R" has blocks x5 = B~ 'b e R™, Xy =0eR"™.

Select Entering Col. Scan zx, = c5 B~ !N — c}, for negative entries. To find zy,

(i) Find yT = ¢k B! (a row vector) by solving the system y” B = cf.

(ii) Build z}, = y"N — c%..
If no entry is negative, current BFS is optimal. Stop. If negative entries exist, pick one. It labels a

suitable “entering column” which has an original index E. The column itself is at®), with coefficient
TE.

Select Leaving Col. Set nonbasic coefficient xg = t, while keeping all other nonbasic vars at 0.
This gives the vector xn = xxr(t) exactly one nonzero entry, with

Nxp(t) = ta®.
Watch the coefficients of the current basis change as ¢ > 0 increases:
x5(t) = x5(0) — B"!Nxp(t) = x5 — tB~*a®) = xj; —td, (%)

where d is found by solving Bd = a(¥). Let t* denote the smallest ¢ > 0 for which x;(t) has a zero
entry. Each zero entry in xz(t*) identifies a column in the current basis that may leave. Pick one;
use L as a symbol for the leaving index. Then the leaving column is a(®). (If x5(t) never develops
a zero entry, sending ¢ — oo proves problem is unbounded. Report that fact and stop.)

Update. Indices E and L are column numbers. At the beginning, £ € N/ and L € B. Swap these
two. Then go back to original problem and make the new block matrices B = Ag, N = A, and
cost vectors ¢, cf/. Update the BFS x* by noting x}, = 0; m — 1 entries for xz(t*) appear in (*x);
and xp = t*. Loop back to “Select Entering Col”.
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Example. Here are some RSM pivots using Bland’s rule for the problem

maximize f = 3x; + 2z9 + 4x3

subject to 1+ To+2x3+ 24 =4
2x1 + 3z3 + x5 =5
2x1 + xo + 3x3 +x6="7
.Z'JZO
Solution. Setup:
11 2 1 00 4
A=|2 0 3 0 1 0], b= 5],
21 3 00 7

1
c'=[3 2 4 0 0 0].

An easy BFS comes from choosing B = {4,5,6}, so N = {1, 2, 3}, giving

1 0 0 1 2
B= 10 1 o]l N= |2 o :
0 0 1 2 3
cp = (o 0 0>, chr = (3 2 4),
v [ 4
xyg=B"b=, 5| f=0
zs \7

First iteration:

(1) Select entering variable using objective coeffs cf/ — ch -IN.
(a) Solve for y in
yl' =cEB™, ie, y'B=ck.
Easy: yI =c5=[0 0 0.
(b) Write and scan vector

X1 T2 xr3

z;{/:yTN—c;{[:—cN: (—3 -2 —4).

Select x; to enter (Bland’s Rule). So F =1, a® =al) zp =z
(2) Select leaving variable, noting Nz = tal® = tall) so x5(t) = x5(0) — td.
(a) Solve for d in
d=B"'a®, e, Bd=a.
Easy: d = a).
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(b) Monitor

Ta 4 1 Ty 4 —t
XB(t) = x5 ! —1 2 = XI5 5 —2t
Tg 7 2 Te 7T—2t

As t increases, t* = 5/2 is the smallest value where x;(t) picks up a zero component.
(Smallest choice makes sure xpz(t*) stays feasible.) Variable x5 labels that slot, so it will
leave. Write L = 5, so x;, = x5, all) =a®.
(3) Update everything.
(a) New BFS refers to sets B and N above:

T 5/2

o 0

* * ‘TB(t*) T3 O
t = =

=) L’N(t*)] v | 3/2

T5 O

Te 2

(b) New basis selection sets B ={1,4,6} and N' = {2, 3,5}.

(¢c) New partitioned matrices

®1 %4 s vy w3 ws
1 0 0
B= | 2 0 | N= 10 1|,
2 0
©1 za o ®2 ®3 s
ch = (3 0 0>, cy = (2 4 0>,
z [ 5/2
xg=B"'b= ., | 32|, f*=15/2
2 \ 2

Second iteration:
(1) Select entering variable.

(a) Solve for y in

T Tp-1 T T
y =cgB ", ie, y B=cg,

ie, [y1 w2 us3] 2 0 0= <3 0 0)'

Gety; =0,y3=0,92=3/2: y' =[0 3/2 0].

File “rsm2013”, version of 13 Jun 2013, page 5. Typeset at 21:11 June 13, 2013.



6 PHIiLIP D. LOEWEN

(b) Write and scan vector

[\
8
N
8
@
8
i

7y =y 'N—ci=[0 3/2 0 | o

w
|
/N
)
W
(e
N———

w
)

T2 z3 Zs5

= (=2 172 32).

Select x5 to enter (Bland’s Rule). Thus E = 2, al®) = a® zp = x,.
(2) Select Leaving Variable, noting xz(t) = x5(0) — td.
(a) Solve for d in

d=B"'al" je, Bd=a®

1 0 d 1
Le., 2 0 0 dy | =10
2 0 1) L 1

Middle row gives d; = 0, then do =1 and d3 = 1. Sod = (0,1, 1).
(b) Monitor

z6 2 1 T 2—-1

As t increases, t* = 3/2 is the smallest value where xz(t) picks up a zero component.
Variable z4 labels that slot, so it will leave. Write L = 4, 2, = x4, all) = a®.

(3) Update everything.
(a) New BFS refers to sets B and N above:

T 5/2

T2 3/2

x"(t) = [XB(t*)] _m | 0
xpn(t)] w0

x5 0

Te 1/2

(b) New basis selection sets B ={1,2,6} and N' = {3,4,5}.
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(c) New partitioned matrices

1 1 0 0
B=|[2 0 o] N = 1,
2 1 0
T1 T2 Te T3 Tg x5
cp = (3 2 0), ch = (4 0 0),
o [ 5/2
xz=B"'b= ., | 3/2 |, f*=25/2
2o \1/2

Third iteration:
(1) Select entering variable.

(a) Solve for y in

T Tp-1 T T
y =cgB ", ie, y B=cg,

1 0 1 T2 Te
ie, [yi w2 w3 | 2 0 o0 |= (3 2 0)-
2

Get y3 =0, then y; = 2, then 5o = 1/2: y' =[2 1/2 0].

(b) Write and scan vector

0 T3 T4 T
zy =y N—-cy=[2 1/2 00 | 3 0 1 |- (4 0 0)
3.0 0

T3 T4 T5

= (32 2 12).

All components are positive, so the current BFS is the UNIQUE MAXIMIZER! To report,
recall the full solution vector x*(¢*) shown explicitly in part 3(a) of the Second Iteration

above. /]
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