The Simplex Method in Matrix Notation

This is also known as "the Revised Simplex Method". Matrix Notation gives ...

1. Conceptual clarity on stuff we know;
2. Computational accuracy and efficiency; and
3. Streamlined access to some new material (like sensitivity analysis).

Setup-Standard Equality-Style Problem. A matrix $A \in \mathbb{R}^{m \times n}$ is given, along with vectors $\mathbf{b} \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

$$
(P) \quad \max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0\right\} .
$$

Always assume A has linearly independent rows. This requires $m \leq n$.
Geometric Interpretation. Label the n columns of matrix A :

$$
A=\left[\mathbf{a}^{(1)}\left|\mathbf{a}^{(2)}\right| \cdots \mid \mathbf{a}^{(n)}\right] .
$$

Given some $\mathbf{x} \in \mathbb{R}^{n}$, recognize

$$
A \mathbf{x}=\left[\mathbf{a}^{(1)}\left|\mathbf{a}^{(2)}\right| \cdots \mid \mathbf{a}^{(n)}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+\cdots+x_{n} \mathbf{a}^{(n)} .
$$

That's a linear combination of cols from A. So, "Solve for x in $A \mathbf{x}=\mathbf{b}$ " means, "Express the given vector b as a linear combination of the cols in $A . "$ Each col is in \mathbb{R}^{m}, and we have n cols to choose between (with $n \geq m$). For a basic solution, pick any m lin indep cols, call them the basis (truly a basis for \mathbb{R}^{m}, the space containing the given rhs \mathbf{b}), and use only those. That's a "basic solution (BS) for $A \mathbf{x}=\mathbf{b}$ "; there may be several of these.

Each component c_{j} in vector $c \in \mathbb{R}^{n}$ tells the reward (if $c_{j}>0$) or penalty (if $c_{j}<0$) for including column $\mathbf{a}^{(j)}$ in the representation.

Simplex Dictionary. Pick any m linearly independent columns from A. Record their subscripts in a set \mathcal{B}. Call these the basis. Permute/clump selected cols into square matrix B (size $m \times m$). Symbolic decomposition

$$
A \stackrel{\text { def }}{=}\left[A_{\mathcal{B}} \mid A_{\mathcal{N}}\right] \stackrel{\text { def }}{=}[B \mid N], \quad \mathbf{x} \stackrel{\text { def }}{=}\left[\frac{\mathbf{x}_{\mathcal{B}}}{\mathbf{x}_{\mathcal{N}}}\right], \quad c \stackrel{\text { def }}{=}\left[\frac{\mathbf{c}_{\mathcal{B}}}{\mathbf{c}_{\mathcal{N}}}\right],
$$

leads to

$$
A \mathbf{x}=\mathbf{b} \Longleftrightarrow B \mathbf{x}_{\mathcal{B}}=\mathbf{b}-N \mathbf{x}_{\mathcal{N}} \Longleftrightarrow \mathbf{x}_{\mathcal{B}}=B^{-1} \mathbf{b}-B^{-1} N \mathbf{x}_{\mathcal{N}} .
$$

Track the objective:

$$
\begin{aligned}
f=\mathbf{c}^{T} \mathbf{x}=\mathbf{c}_{\mathcal{B}}^{T} \mathbf{x}_{\mathcal{B}}+\mathbf{c}_{\mathcal{N}}^{T} \mathbf{x}_{\mathcal{N}} & =\mathbf{c}_{\mathcal{B}}^{T}\left(B^{-1} \mathbf{b}-B^{-1} N \mathbf{x}_{\mathcal{N}}\right)+\mathbf{c}_{\mathcal{N}}^{T} \mathbf{x}_{\mathcal{N}} \\
& =\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \mathbf{b}-\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}\right) \mathbf{x}_{\mathcal{N}} .
\end{aligned}
$$

New dictionary

$$
\frac{f=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \mathbf{b}-\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}\right) \mathbf{x}_{\mathcal{N}}}{\mathbf{x}_{\mathcal{B}}=B^{-1} \mathbf{b}-\quad B^{-1} N \mathbf{x}_{\mathcal{N}}}
$$

\ldots an algebraic structure containing symbols x_{1}, \ldots, x_{n}, f together with a bunch of numbers. Substituting $\mathbf{x}_{\mathcal{N}}=\mathbf{0}$ determines the numerical values of $\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b}$ in a Basic Solution for $A \mathbf{x}=\mathbf{b}$. It's nice when this is feasible, but the derivation above does not require that.

Versatility. Imagine picking any values at all for the $n-m$ elements of vector $\mathbf{x}_{\mathcal{N}}$. This dictionary shows the m components of $\mathbf{x}_{\mathcal{B}}$ you must use to satisfy $A \mathbf{x}=\mathbf{b}$ and the value of $f=\mathbf{c}^{T} \mathbf{x}$ that results when you do. (Feasibility is ignored.) Choosing $\mathbf{x}_{\mathcal{N}}^{*}=\mathbf{0}$ gives the basic solution $\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b}$ and the objective value $f^{*}=\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{c}_{\mathcal{B}}^{T} \mathbf{x}_{\mathcal{B}}^{*}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \mathbf{b}$.

Optimality and Improvability. Suppose $\mathbf{x}_{\mathcal{B}}^{*} \geq 0$, so \mathbf{x}^{*} is feasible. Consider the row vector $\mathbf{z}_{\mathcal{N}}^{T}=\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}\right):$

- If each component $z_{i}>0$, every nonzero vector $x_{\mathcal{N}}$ will subtract a positive amount from f^{*}. So \mathbf{x}^{*} is the unique maximizer.
- If each component $z_{i} \geq 0$, no nonzero vector $\mathbf{x}_{\mathcal{N}}$ can add a positive amount to f^{*}. So x^{*} is a maximizer, but perhaps not unique.
- If some component $z_{k}<0$, a positive value of component $\left(x_{\mathcal{N}}\right)_{k}$ will make f increase. Improvement is possible, so we will pivot.

Pivot Selection. Suppose we have a feasible dictionary and the cost coefficient row $\mathbf{z}_{\mathcal{N}}^{T}=$ $\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}\right)$ has a negative entry. Identify the associated column of A and call it $\mathbf{a}^{(E)}$. Notice $E \in \mathcal{N}$. Choosing $\mathbf{x}_{\mathcal{N}}(t)$ so that $x_{E}=t$ and $x_{j}=0$ for all other $j \in \mathcal{N}$ leads to $N \mathbf{x}_{\mathcal{N}}(t)=t \mathbf{a}^{(E)}$. Track the values of current basic coeffs:

$$
\begin{equation*}
\mathbf{x}_{\mathcal{B}}(t)=B^{-1} \mathbf{b}-B^{-1}\left[t \mathbf{a}^{(E)}\right] . \tag{**}
\end{equation*}
$$

For many t this will have m nonzero entries. Pick the smallest $t \geq 0$ where one or more entry changes to 0 : those entries identify the columns eligible to leave. Call the lucky value t^{*}.

Update. Swap entering col into basis; your chosen leaving col out; update coefficient vector using $\mathbf{x}_{E}^{*}=t^{*}$, other coeffs from ($* *$).

Efficient Implementation. One never actually computes B^{-1} from B. (Sometimes B^{-1} is given on exams.) Instead, we solve linear systems as follows:
(i) To generate objective coefficients, introduce y to reorganize

$$
\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N=\mathbf{y}^{T} N, \quad \text { as } \quad \mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1}, \quad \text { i.e. }, \quad \mathbf{y}^{T} B=\mathbf{c}_{\mathcal{B}}^{T} .
$$

Find \mathbf{y} by solving a linear system.
(ii) In coefficient update, find $\mathbf{d}=B^{-1} \mathbf{a}^{(E)}$ by solving system

$$
B \mathbf{d}=\mathbf{a}^{(E)} .
$$

Use tiny labels called "basis headers" to remember which cols are basic in each iteration. [Chvátal box 7.1, page 103.]

The Revised Simplex Method, Step by Step

Context. The Revised Simplex Method works on problems of this form:

$$
\begin{equation*}
\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\} . \tag{EqLP}
\end{equation*}
$$

(Many problems can be put into this form.) Here a matrix A of shape $m \times n$ is given, along with (column) vectors $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$. We assume that A has linearly independent rows (so $m \leq n$).

Initialize. You need a feasible basis to get started. (Try to guess one; use an auxiliary "Phase One" step if guessing fails.) Let \mathcal{B} be the set of m subscripts that define the current basis; let \mathcal{N} be the set containing the $n-m$ non-basic subscripts.

Partition. Use the sets of subscripts \mathcal{B} and \mathcal{N} to select columns from A and their corresponding rows of \mathbf{x}, \mathbf{c} :

$$
A=\left[\begin{array}{ll}
A_{\mathcal{B}} & A_{\mathcal{N}}
\end{array}\right]=\left[\begin{array}{ll}
B & N
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
\mathbf{c}_{\mathcal{B}} \\
\mathbf{c}_{\mathcal{N}}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{\mathcal{B}} \\
\mathbf{x}_{\mathcal{N}}
\end{array}\right] .
$$

Matrix B has shape $m \times m$. It is certain to be invertible because the columns of A with indices in \mathcal{B} must be linearly independent. The dictionary is

$$
\frac{f=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \mathbf{b}-\left(\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}\right) \mathbf{x}_{\mathcal{N}}}{\mathbf{x}_{\mathcal{B}}=B^{-1} N \mathbf{x}_{\mathcal{N}}}
$$

The current BFS $\mathbf{x}^{*} \in \mathbb{R}^{n}$ has blocks $\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b} \in \mathbb{R}^{m}, \mathbf{x}_{\mathcal{N}}^{*}=\mathbf{0} \in \mathbb{R}^{n-m}$.
Select Entering Col. Scan $\mathbf{z}_{\mathcal{N}}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N-\mathbf{c}_{\mathcal{N}}^{T}$ for negative entries. To find $\mathbf{z}_{\mathcal{N}}$,
(i) Find $\mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1}$ (a row vector) by solving the system $\mathbf{y}^{T} B=\mathbf{c}_{\mathcal{B}}^{T}$.
(ii) Build $\mathbf{z}_{\mathcal{N}}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{\mathcal{N}}^{T}$.

If no entry is negative, current BFS is optimal. Stop. If negative entries exist, pick one. It labels a suitable "entering column" which has an original index E. The column itself is $\mathbf{a}^{(E)}$, with coefficient x_{E}.

Select Leaving Col. Set nonbasic coefficient $x_{E}=t$, while keeping all other nonbasic vars at 0 . This gives the vector $\mathbf{x}_{\mathcal{N}}=\mathbf{x}_{\mathcal{N}}(t)$ exactly one nonzero entry, with

$$
N \mathbf{x}_{\mathcal{N}}(t)=t \mathbf{a}^{(E)}
$$

Watch the coefficients of the current basis change as $t \geq 0$ increases:

$$
\begin{equation*}
\mathbf{x}_{\mathcal{B}}(t)=\mathbf{x}_{\mathcal{B}}(0)-B^{-1} N \mathbf{x}_{\mathcal{N}}(t)=\mathbf{x}_{\mathcal{B}}^{*}-t B^{-1} \mathbf{a}^{(E)}=\mathbf{x}_{\mathcal{B}}^{*}-t \mathbf{d}, \tag{**}
\end{equation*}
$$

where \mathbf{d} is found by solving $B \mathbf{d}=\mathbf{a}^{(E)}$. Let t^{*} denote the smallest $t \geq 0$ for which $\mathbf{x}_{\mathcal{B}}(t)$ has a zero entry. Each zero entry in $\mathbf{x}_{\mathcal{B}}\left(t^{*}\right)$ identifies a column in the current basis that may leave. Pick one; use L as a symbol for the leaving index. Then the leaving column is $\mathbf{a}^{(L)}$. (If $\mathbf{x}_{\mathcal{B}}(t)$ never develops a zero entry, sending $t \rightarrow \infty$ proves problem is unbounded. Report that fact and stop.)

Update. Indices E and L are column numbers. At the beginning, $E \in \mathcal{N}$ and $L \in \mathcal{B}$. Swap these two. Then go back to original problem and make the new block matrices $B=A_{\mathcal{B}}, N=A_{\mathcal{N}}$, and cost vectors $\mathbf{c}_{\mathcal{B}}^{T}, \mathbf{c}_{\mathcal{N}}^{T}$. Update the BFS \mathbf{x}^{*} by noting $\mathbf{x}_{\mathcal{N}}^{*}=\mathbf{0} ; m-1$ entries for $\mathbf{x}_{\mathcal{B}}\left(t^{*}\right)$ appear in $(* *)$; and $x_{E}=t^{*}$. Loop back to "Select Entering Col".

Example. Here are some RSM pivots using Bland's rule for the problem

$$
\begin{array}{ll}
\operatorname{maximize} f=3 x_{1}+2 x_{2}+4 x_{3} & \\
\text { subject to } \quad x_{1}+x_{2}+2 x_{3}+x_{4} & =4 \\
& 2 x_{1}+3 x_{3}+x_{5} \\
2 x_{1}+x_{2}+3 x_{3} & =5 \\
x_{j} \geq 0 & +x_{6}
\end{array}=7
$$

Solution. Setup:

$$
\begin{aligned}
A & =\left[\begin{array}{llllll}
1 & 1 & 2 & 1 & 0 & 0 \\
2 & 0 & 3 & 0 & 1 & 0 \\
2 & 1 & 3 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
4 \\
5 \\
7
\end{array}\right], \\
\mathbf{c}^{T} & =\left[\begin{array}{llllll}
3 & 2 & 4 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

An easy BFS comes from choosing $\mathcal{B}=\{4,5,6\}$, so $\mathcal{N}=\{1,2,3\}$, giving

$$
\begin{array}{ll}
B=\left(\begin{array}{ccc}
x_{4} & x_{5} & x_{6} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & N=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 1 & 2 \\
2 & 0 & 3 \\
2 & 1 & 3
\end{array}\right), \\
\mathbf{c}_{\mathcal{B}}^{T}=\left(\begin{array}{ccc}
x_{4} & x_{5} & x_{6} \\
0 & 0 & 0
\end{array}\right), & \mathbf{c}_{\mathcal{N}}^{T}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
3 & 2 & 4
\end{array}\right), \\
\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b}=\begin{array}{c}
x_{4} \\
x_{5} \\
x_{6}
\end{array}\left(\begin{array}{l}
4 \\
5 \\
7
\end{array}\right), & f^{*}=0 .
\end{array}
$$

First iteration:
(1) Select entering variable using objective coeffs $\mathbf{c}_{\mathcal{N}}^{T}-\mathbf{c}_{\mathcal{B}}^{T} B^{-1} N$.
(a) Solve for \mathbf{y} in

$$
\mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1}, \quad \text { i.e., } \quad \mathbf{y}^{T} B=\mathbf{c}_{\mathcal{B}}^{T}
$$

Easy: $\mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$.
(b) Write and scan vector

$$
\mathbf{z}_{\mathcal{N}}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{\mathcal{N}}^{T}=-\mathbf{c}_{\mathcal{N}}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
-3 & -2 & -4
\end{array}\right) .
$$

Select x_{1} to enter (Bland's Rule). So $E=1, \mathbf{a}^{(E)}=\mathbf{a}^{(1)}, x_{E}=x_{1}$.
(2) Select leaving variable, noting $N x_{\mathcal{N}}=t \mathbf{a}^{(\text {in })}=t \mathbf{a}^{(1)}$ so $\mathbf{x}_{\mathcal{B}}(t)=\mathbf{x}_{\mathcal{B}}(0)-t d$.
(a) Solve for \mathbf{d} in

$$
\mathbf{d}=B^{-1} \mathbf{a}^{(1)}, \quad \text { i.e., } \quad B \mathbf{d}=\mathbf{a}^{(1)} .
$$

Easy: $\mathbf{d}=\mathbf{a}^{(1)}$.
(b) Monitor

$$
\mathbf{x}_{\mathcal{B}}(t)={ }_{x_{4}}^{x_{5}} \begin{aligned}
& x_{6} \\
& x_{6}
\end{aligned}\left(\begin{array}{l}
\\
5 \\
7
\end{array}\right)-t\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)=\begin{gathered}
x_{4} \\
x_{5} \\
x_{6}
\end{gathered}\left(\begin{array}{c}
4-t \\
5-2 t \\
7-2 t
\end{array}\right) .
$$

As t increases, $t^{*}=5 / 2$ is the smallest value where $\mathbf{x}_{\mathcal{B}}(t)$ picks up a zero component. (Smallest choice makes sure $\mathbf{x}_{\mathcal{B}}\left(t^{*}\right)$ stays feasible.) Variable x_{5} labels that slot, so it will leave. Write $L=5$, so $\mathbf{x}_{L}=x_{5}, \mathbf{a}^{(L)}=\mathbf{a}^{(5)}$.
(3) Update everything.
(a) New BFS refers to sets \mathcal{B} and \mathcal{N} above:

$$
\mathbf{x}^{*}\left(t^{*}\right)=\left[\begin{array}{l}
x_{\mathcal{B}}\left(t^{*}\right) \\
x_{\mathcal{N}}\left(t^{*}\right)
\end{array}\right]=\begin{gathered}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{gathered}\left(\begin{array}{c}
5 / 2 \\
x_{6}
\end{array}\left(\begin{array}{c}
0 \\
0 \\
3 / 2 \\
0
\end{array}\right) .\right.
$$

(b) New basis selection sets $\mathcal{B}=\{1,4,6\}$ and $\mathcal{N}=\{2,3,5\}$.
(c) New partitioned matrices

$$
\begin{array}{cc}
x_{1} & x_{4} \\
x_{6} \\
B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 0 \\
2 & 0 & 1
\end{array}\right), & N=\left(\begin{array}{ccc}
x_{2} & x_{3} & x_{5} \\
1 & 2 & 0 \\
0 & 3 & 1 \\
1 & 3 & 0
\end{array}\right), \\
\mathbf{c}_{\mathcal{B}}^{T}=\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{6} \\
3 & 0 & 0
\end{array}\right), & \mathbf{c}_{\mathcal{N}}^{T}=\left(\begin{array}{ccc}
x_{2} & x_{3} & x_{5} \\
2 & 4 & 0
\end{array}\right), \\
\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b}=\begin{array}{c}
x_{4} \\
x_{4}
\end{array}\left(\begin{array}{c}
5 / 2 \\
3 / 2 \\
x_{6}
\end{array}\right), & f^{*}=15 / 2 .
\end{array}
$$

Second iteration:
(1) Select entering variable.
(a) Solve for y in

$$
\begin{aligned}
& \mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \text {, } \text { i.e., } \mathbf{y}^{T} B=\mathbf{c}_{\mathcal{B}}^{T}, \\
& \\
& \text { i.e., } \quad\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{6} \\
2 & 1 & 0 \\
2 & 0 & 0 \\
2 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{6} \\
3 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Get $y_{1}=0, y_{3}=0, y_{2}=3 / 2: \mathbf{y}^{T}=\left[\begin{array}{lll}0 & 3 / 2 & 0\end{array}\right]$.
(b) Write and scan vector

$$
\begin{aligned}
\mathbf{z}_{\mathcal{N}}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{\mathcal{N}}^{T} & =\left[\begin{array}{lll}
x_{2} & x_{3} & x_{5} \\
0 & 3 / 2 & 0
\end{array}\right]\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 3 & 1 \\
1 & 3 & 0
\end{array}\right)-\left(\begin{array}{ccc}
x_{2} & x_{3} & x_{5} \\
2 & 4 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
x_{2} & x_{3} & x_{5} \\
-2 & 1 / 2 & 3 / 2
\end{array}\right) .
\end{aligned}
$$

Select x_{2} to enter (Bland's Rule). Thus $E=2, \mathbf{a}^{(E)}=\mathbf{a}^{(2)}, x_{E}=x_{2}$.
(2) Select Leaving Variable, noting $\mathbf{x}_{\mathcal{B}}(t)=\mathbf{x}_{\mathcal{B}}(0)-t d$.
(a) Solve for \mathbf{d} in

$$
\begin{aligned}
\mathbf{d}=B^{-1} \mathbf{a}^{(i n)}, & \text { i.e., } B \mathbf{d}=\mathbf{a}^{(2)} \\
& \\
& \text { i.e., } \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 0 \\
2 & 0 & 1
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Middle row gives $d_{1}=0$, then $d_{2}=1$ and $d_{3}=1$. So $\mathbf{d}=(0,1,1)$.
(b) Monitor

$$
\mathbf{x}_{\mathcal{B}}(t)=\begin{aligned}
& x_{1} \\
& x_{4} \\
& x_{6}
\end{aligned}\left(\begin{array}{c}
5 / 2 \\
3 / 2 \\
2
\end{array}\right)-t\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)=\begin{aligned}
& x_{1} \\
& x_{4} \\
& x_{6}
\end{aligned}\left(\begin{array}{c}
5 / 2 \\
3 / 2-t \\
2-t
\end{array}\right)
$$

As t increases, $t^{*}=3 / 2$ is the smallest value where $\mathbf{x}_{\mathcal{B}}(t)$ picks up a zero component. Variable x_{4} labels that slot, so it will leave. Write $L=4, x_{L}=x_{4}, \mathbf{a}^{(L)}=\mathbf{a}^{(4)}$.
(3) Update everything.
(a) New BFS refers to sets \mathcal{B} and \mathcal{N} above:

$$
\left.\mathbf{x}^{*}\left(t^{*}\right)=\left[\begin{array}{c}
\mathbf{x}_{\mathcal{B}}\left(t^{*}\right) \\
\mathbf{x}_{\mathcal{N}}\left(t^{*}\right)
\end{array}\right]=\begin{array}{c|c}
x_{1} & 5 / 2 \\
x_{2} & 3 / 2 \\
x_{3} & 0 \\
x_{4} & 0 \\
x_{5} & 0 \\
x_{6} & 1 / 2
\end{array}\right)
$$

(b) New basis selection sets $\mathcal{B}=\{1,2,6\}$ and $\mathcal{N}=\{3,4,5\}$.
(c) New partitioned matrices

$$
\begin{array}{cc}
x_{1} & x_{2} \\
x_{6} \\
B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 0 \\
2 & 1 & 1
\end{array}\right), & N=\left(\begin{array}{ccc}
x_{3} & x_{4} & x_{5} \\
2 & 1 & 0 \\
3 & 0 & 1 \\
3 & 0 & 0
\end{array}\right), \\
\mathbf{c}_{\mathcal{B}}^{T}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{6} \\
3 & 2 & 0
\end{array}\right), & \mathbf{c}_{\mathcal{N}}^{T}=\left(\begin{array}{ccc}
x_{3} & x_{4} & x_{5} \\
4 & 0 & 0
\end{array}\right), \\
\mathbf{x}_{\mathcal{B}}^{*}=B^{-1} \mathbf{b}=\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{c}
5 / 2 \\
3 / 2 \\
x_{6}
\end{array}\right), & f^{*}=25 / 2 .
\end{array}
$$

Third iteration:
(1) Select entering variable.
(a) Solve for \mathbf{y} in

$$
\begin{aligned}
& \mathbf{y}^{T}=\mathbf{c}_{\mathcal{B}}^{T} B^{-1} \text {, i.e., } \mathbf{y}^{T} B=\mathbf{c}_{\mathcal{B}}^{T}, \\
& \\
& \text { i.e., }\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{6} \\
2 & 1 & 0 \\
2 & 0 & 0 \\
2 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{6} \\
3 & 2 & 0
\end{array}\right) .
\end{aligned}
$$

Get $y_{3}=0$, then $y_{1}=2$, then $y_{2}=1 / 2: \mathbf{y}^{T}=\left[\begin{array}{lll}2 & 1 / 2 & 0\end{array}\right]$.
(b) Write and scan vector

$$
\begin{aligned}
\mathbf{z}_{\mathcal{N}}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{\mathcal{N}}^{T} & =\left[\begin{array}{lll}
x_{3} & x_{4} & x_{5} \\
2 & 1 / 2 & 0
\end{array}\right]\left(\begin{array}{ccc}
2 & 1 & 0 \\
3 & 0 & 1 \\
3 & 0 & 0
\end{array}\right)-\left(\begin{array}{ccc}
x_{3} & x_{4} & x_{5} \\
4 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
x_{3} & x_{4} & x_{5} \\
3 / 2 & 2 & 1 / 2
\end{array}\right) .
\end{aligned}
$$

All components are positive, so the current BFS is the UNIQUE MAXIMIZER! To report, recall the full solution vector $\mathbf{x}^{*}\left(t^{*}\right)$ shown explicitly in part 3(a) of the Second Iteration above.

