
M340(921) Solutions—Problem Set 4
(c) 2013, Philip D Loewen

1. (a) Here is a sketch of the polygonal region S:
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(b) The vertex coordinates of points in S, as labelled in the figure, are

A(3
√

3, 0), B

(

9 − 2
√

3

1 +
√

3
,

5
√

3

1 +
√

3

)

, C(0, 2), D(0, 1), E(
√

3, 0).

(c) A line that makes an angle θ with the positive x-axis has slope m = tan θ. The given lines
have slopes

1√
3

= tan
π

6
, − 1√

3
= tan

(

− π

6

)

, and − 1 = tan
(

− π

4

)

.

This makes the interior angles at the points on an axis easy to find:

6 A =
π

4
, 6 C =

2π

3
, 6 D =

2π

3
, 6 E =

5π

6
.

The interior angles of every 5-sided polygon sum to 3π. Therefore 6 B =
7π

12
.

(In degrees, (6 A, 6 B, 6 C, 6 D, 6 E) = (45, 105, 120, 120, 150). But radians were specified.)

(d) To maximize f(x, y) = x−y, we want the largest possible value for x and the smallest possible

value for y. Clearly the point A(3
√

3, 0) has these properties, and the labels shown above have
been chosen to match.

(e) For each nonzero vector c = (c1, c2), the points in S lie on the boundary. They are precisely
the points where the vector c = (c1, c2) is normal to a line that contains no interior points of
S. To summarize the results in written form, associate the angle θ with c exactly when

c = |c| ( cos θ, sin θ) .
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2 UBC M340 Solutions for Problem Set #4

Except for five rays discussed below, there is a unique maximizing point in S, and it is one of
the vertices labelled above:

− π

2
< θ <

π

4
=⇒ unique maximizer is A(3

√
3, 0); Z(c) = 3

√
3 c1

π

4
< θ <

2π

3
=⇒ unique maximizer is B; Z(c) =

(9 − 2
√

3)c1 + 5
√

3 c2

1 +
√

3
2π

3
< θ < π =⇒ unique maximizer is C(0, 2); Z(c) = 2c2

π < θ <
4π

3
=⇒ unique maximizer is D(0, 1); Z(c) = c2

4π

3
< θ <

3π

2
=⇒ unique maximizer is E(

√
3, 0); Z(c) =

√
3 c1

On the rays between the wedges just given, two adjacent vertices both achieve the maximum
and all points on the segment between them do, too. For example, the set of maximizers when
θ = π/4 is the segment AB, including both endpoints. The first figure below shows the desired
map.
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Discussion (not required): The map has a nice geometrical relationship to the original set
S. The second figure illustrates it. When each coloured wedge from the map is positioned at
its corresponding vertex, the faces of the map are orthogonal to the faces of S that meet at
that vertex. (Objective vectors that select a whole face of the constraint set are not shown
here. Please think about how to add them.)

(f) Most of the requested Z-values are embedded in the solution to part (e). For completeness,
we show the borderline cases here.

θ =
π

4
: c1 = c2 > 0, Z(c) = 3

√
3 c1 = 3

√
3 c2

θ =
2π

3
: c2 = −

√
3c1 > 0, Z(c) = −2 c1 =

2
√

3

3
c2

θ = −π : c1 < 0, c2 = 0, Z(c) = 0

θ = 4π/3 : c2 =
√

3 c1 < 0, Z(c) =
√

3 c1 = c2

θ = −π/2 : c1 = 0, c2 < 0, Z(c) = 0
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UBC M340 Solutions for Problem Set #4 3

Remarks (Not Required from Students): Here is a sketch showing part of the graph of
function Z. This is the surface z = Z(c1, c2) above the (c1, c2)-plane; a disk in the plane is
shown with the same colour codes used in earlier parts.
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2. Here we copy the given problem and then write its dual beside it:

maximize ζ = −x1 − 2x2

subject to − 2x1 + 7x2 ≤ 6

− 3x1 + x2 ≤ − 1

9x1 − 4x2 ≤ 6

x1 − x2 ≤ 1

7x1 − 3x2 ≤ 6

− 5x1 + 2x2 ≤ − 3

x1, x2 ≥ 0

minimize ξ = 6y1 − y2 + 6y3 + y4 + 6y5 − 3y6

subject to − 2y1 − 3y2 + 9y3 + y4 + 7y5 − 5y6 ≥ − 1

7y1 + y2 − 4y3 − y4 − 3y5 + 2y6 ≥ − 2

The dual problem has a feasible origin. Transforming to standard maximization form and intro-
ducing slack variables z1, z2, we arrive at the dictionary

− ξ = − 6y1 + y2 − 6y3 − y4 − 6y5 + 3y6

z1 = 1 − 2y1 − 3y2 + 9y3 + y4 + 7y5 − 5y6

z2 = 2 + 7y1 + y2 − 4y3 − y4 − 3y5 + 2y6

Only y2 and y6 are eligible to enter. Choosing with the largest-coefficient rule, we let y6 enter
the basis. This forces z1 to leave, and leads to the dictionary written below. (The pivot equation
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4 UBC M340 Solutions for Problem Set #4

appears under the objective row.)

− ξ = 0.6 − 7.2y1 − 0.8y2 − 0.6y3 − 0.4y4 − 1.8y5 − 0.6z1

y6 = 0.2 − 0.4y1 − 0.6y2 + 1.8y3 + 0.2y4 + 1.4y5 − 0.2z1

z2 = 2.4 + 6.2y1 − 0.2y2 − 0.4y3 − 0.6y4 − 0.2y5 − 0.4z1

This is an optimal dictionary, with

(−ξ)max = 0.6 at (y∗
1 , y∗

2 , y∗
3 , y∗

4 , y∗
5 , y∗

6) = (0, 0, 0, 0, 0, 0.2); (z∗1 , z∗2 ) = (0, 2.4). (∗∗)

It follows that ζmax = ξmin = −0.6. The point that attains the primal maximum comes from
negating the coefficients of the dual slacks in the optimal dictionary just written. Thus we have
the primal solution

ζmax = −0.6 at (x∗
1, x

∗
2) = (0.6, 0). (∗)

It’s easy to double-check that this is correct: the vector y∗ in line (∗∗) is dual-feasible, the vector
x∗ in (∗) is primal-feasible, and ζ(x∗) = ξ(y∗). These three conditions provide certain confirmation
that x∗ and y∗ are simultaneous optimizers in their respective problems.

3. (a) The lower rows of the given dictionary encode the problem’s constraints:

x1 = 1 + x2 − 2x4 + x6

x3 = 3 − 4x2 + 3x4 − 2x6

x5 = 2 + 3x2 + 2x4

In the initial dictionary, the slack variables are basic. Work backward toward this. Pivot x6

into the basis and x1 out:
x6 = − 1 − x2 + 2x4 + x1

x3 = 5 − 2x2 − x4 − 2x1

x5 = 2 + 3x2 + 2x4

Next, pivot x4 into the basis and x3 out. Re-order the equations to get

x4 = 5 − 2x1 − 2x2 − x3

x5 = 12 − 4x1 − x2 − 2x3

x6 = 9 − 3x1 − 5x2 − 2x3

Using these equations, we can express the objective row as

ζ = 15 − x2 − 3x4 = 15 − x2 − 3(5 − 2x1 − 2x2 − x3) = 6x1 + 5x2 + 3x3.

Here is the original standard-form LP:

(P )

















Maximize ζ = 6x1 + 5x2 + 3x3

subject to 2x1 + 2x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 12

3x1 + 5x2 + 2x3 ≤ 9

x1, x2, x3 ≥ 0
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UBC M340 Solutions for Problem Set #4 5

(b) The given dictionary is optimal, so ζmax = 15. To achieve this value requires x2 = 0 and
x4 = 0, but allows some positive values for the nonbasic variable x6. The dictionary rows give
the parametric list of maximizers

x = (1 + x6, 0, 3 − 2x6, 0, 2, x6), 0 ≤ x6 ≤ 3

2
.

Here the permitted interval of values for x6 is the largest one compatible with the componen-
twise constraint x ≥ 0.

(c) The given dictionary is optimal, so the dual minimizer can be read out of the objective row:
y∗ = (3, 0, 0). In particular, if Z denotes the maximum value in the problem as a function of
the constraint components (b1, b2, b3), we have Z = 15 right now, and

∂Z

∂b1
= y∗

1 = 3,
∂Z

∂b2
= y∗

2 = 0,
∂Z

∂b3
= y∗

3 = 0.

The only parameter with a perceptible effect on Z is b1. To get ∆Z = +2, we need

+2 = ∆Z ≈
(

∂Z

∂b1

)

∆b1 = 3∆b1.

That is, ∆b1 ≈ 2/3. We should change the right side of the first constraint from 5 to 5+2/3 =
17/3. (This change actually gives Z = 17 exactly, but detailed confirmation was not requested.)

(d) The dual for problem (P ) (see part (a) above) is

(D)

















Minimize ξ = 5y1 + 12y2 + 9y3

subject to 2y1 + 4y2 + 3y3 ≥ 6

2y1 + y2 + 5y3 ≥ 5

y1 + 2y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

The dual dictionary corresponding to the optimal primal dictionary given in the setup can be
found by exploiting the negative-transpose property (or by pivoting):

− ξ = − 15 − z1 − 3z3 − 2y2

z2 = 1 − z1 + 4z3 − 3y2

y1 = 3 + 2z1 − 3z3 − 2y2

y3 = 0 − z1 + 2z3

It reveals that (−ξ)max = −15, attained only when z1 = 0, z3 = 0, and y2 = 0. This produces
the unique dual minimizer y∗ = (3, 0, 0) with dual slacks z∗ = (0, 1, 0).

(d′) [Alternative] Every dual minimizer must collaborate with every primal maximizer to satisfy
the complementary slackness conditions. Let’s consider the primal maximizer obtained when
x∗

6 = 1, namely,

x∗ = (x∗
1, x

∗
2, x

∗
3) = (2, 0, 1); w∗ = (x∗

4, x
∗
5, x

∗
6) = (0, 2, 1).

(i) Clearly both x∗ ≥ 0 and w∗ ≥ 0.

(ii) Since w∗
2 > 0 and w∗

3 > 0, any dual minimizer must obey y∗
2 = 0 and y∗

3 = 0.
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6 UBC M340 Solutions for Problem Set #4

(iii) Since x∗
1 > 0 and x∗

3 > 0, the slacks for a true dual minimizer must obey

0 = z∗1 = 2y∗
1 + 4y∗

2 + 3y∗
3 − 6

0 = z∗3 = y∗
1 + 2y∗

2 + 2y∗
3 − 3

Using y∗
2 = 0 and y∗

3 = 0 from line (ii) gives a consistent system with the unique solution
y∗
1 = 3. Therefore we must have y∗ = (3, 0, 0), and the corresponding slack vector is

z∗ = (0, 1, 0).

(iv) Since y∗ ≥ 0 and z∗ ≥ 0, the vector y∗ is indeed a dual minimizer corresponding to the
given primal maximizer. That’s no surprise: what we get from the work above is proof
that no other choice of y∗ has this property. That is, the minimizer in (D) is unique.

(e) Here we have a primal problem with a nonunique maximizer and a dual problem with a
unique minimizer. Dual thinking reveals that the given statement is false. Indeed, we could
rewrite (D) in standard primal form: it would still have a unique solution. But the dual of (D)
would then be (P ), whose solution is not unique.

Once more, with feeling: the Duality Theorem promises that if a LP has an optimizer, then
its dual has an optimizer as well. But it does not assert that uniqueness of the optimizer on
one side corresponds to uniqueness on the other, and this example illustrates that this is too
much to hope for in general.

4. (a) We can standardize the primal problem by splitting each free variable into two nonnegative
variables,

xj = uj − vj , uj ≥ 0, vj ≥ 0, j = 1, 2,

and replacing the equation constraint with a pair of opposing inequalities. The reformulated
problem is

Maximize F = 6u1 − 6v1 + 6u2 − 6v2 − x3 − x4

subject to u1 − v1 + 2u2 − 2v2 + x3 + x4 ≤ 5

3u1 − 3v1 + u2 − v2 − x3 ≤ 8

u2 − v2 + x3 + x4 ≤ 1

− u2 + v2 − x3 − x4 ≤ − 1

u1, v1, u2, v2, x3, x4 ≥ 0

Let us use name the dual variables suggestively as y1, y2, r3, and s3. Then the dual becomes

Minimize G = 5y1 + 8y2 + r3 − s3

subject to y1 + 3y2 ≥ 6

− y1 − 3y2 ≥ − 6

2y1 + y2 + r3 − s3 ≥ 1

− 2y1 − y2 − r3 + s3 ≥ − 1

y1 − y2 + r3 − s3 ≥ − 1

y1 + r3 − s3 ≥ − 1

y1, y2, r3, s3 ≥ 0

Here we notice two pairs of opposing inequalities, just like the ones that came up when we
split the equation-constraint in the primal. Also, the dual variables r3 and s3 appear above
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UBC M340 Solutions for Problem Set #4 7

only in the combination r3 − s3. By giving this combination the new name y3, we arrive at a
more compact form of the dual problem:

(D)

Minimize g = 5y1 + 8y2 + y3

subject to y1 + 3y2 = 6

2y1 + y2 + y3 = 1

y1 − y2 + y3 ≥ − 1

y1 + y3 ≥ − 1

y1, y2 ≥ 0; y3 free

(There is a general principle at work here. Equations in the primal problem will correspond
to free variables in the dual, and free primal variables generate equations in the dual.)

(b) To test x∗ = (3,−1, 0, 2) for optimality, one option is to use the transformations in (a) to
produce the extended vector

X∗ = (u∗
1, v

∗
1 , u∗

2, v
∗
2 , x∗

3, x
∗
4) = (3, 0, 0, 1, 0, 2)

and then to apply the complementarity recipe with the extended dual problem above. This
turns out to be equivalent to a natural and intuitive modification of the recipe compatible with
the general principles stated in (a). The speedy version works as follows.

(i) Primal Feasibility: The simple inequalities x∗
3 ≥ 0 and x∗

4 ≥ 0 both hold. The primal
slack variables are

w∗
1 = 5 − x∗

1 − 2x∗
2 − x∗

3 − x∗
4 = 2

w∗
2 = 8 − 3x∗

1 − x∗
2 + x∗

3 = 0

w∗
3 = 1 − x∗

2 − x∗
3 − x∗

4 = 0

Since w∗
1 ≥ 0, w∗

2 ≥ 0 and w∗
3 = 0, the vector x∗ is indeed feasible in (P ).

(ii) Complementarity I: Slack primal constraints imply zero dual variables. Since w∗
1 > 0, we

must have y∗
1 = 0 in any minimizer y∗ of (D).

(iii) Complementarity II: Nonzero primal decision values imply tight dual constraints. Since
x∗

1, x
∗
2, x

∗
4 are nonzero, constraints 1, 2, 4 in (D) must hold as equations. Remembering

y∗
1 = 0 from (ii), we obtain the 3 × 2 system

3y∗
2 = 6

y∗
2 + y∗

3 = 1

y∗
3 = − 1

This looks overdetermined, but nonetheless has the unique solution y∗
2 = 2, y∗

3 = −1.

(iv) Dual feasibility: Steps (iii)–(iv) together suggest the dual vector y∗ = (0, 2,−1). This
satisfies constraints numbered 1, 2, 4 in (D) by construction. However, constraint 3 fails:
the dual slack

z∗3 = y∗
1 − y∗

2 + y∗
3 + 1 = 0 − 2 − 1 + 1 = −2,

is negative! Therefore y∗ is not dual-feasible.

Since the system of equations describing the vector y∗ has no other solutions, the given vector x∗

is not optimal in the primal.
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8 UBC M340 Solutions for Problem Set #4

Direct calculation (optional—not required for full credit) shows that each vector in the sequence

x(k) =

(

7

3
+ 2k, 1 − 3k, 3k, 0

)

, k = 1, 2, 3, . . . ,

is feasible in the given problem, and that f(x(k)) → +∞ as k → ∞. Thus the problem is unbounded.
It follows that no vector can give a maximum: this rules out the particular x∗ in the setup, along
with all other candidates.

5. When (P ) has a maximizer x∗, the duality theorem guarantees that (D) has a minimizer y∗.
Together, x∗ and y∗ must satisfy the Complementary Slackness conditions. These involve the
primal slack variables

w∗
1 = 7 − x∗

1 + 2x∗
2 + x∗

3 − x∗
4

w∗
2 = 4 − x∗

1 − 5x∗
2 − x∗

3 + x∗
4

Given x∗
4 = 1, we have

w∗
1 = 6 − x∗

1 + 2x∗
2 + x∗

3

w∗
2 = 5 − x∗

1 − 5x∗
2 − x∗

3

Since x∗ is feasible in (P ), we have w∗
2 ≥ 0. In particular, since x∗

2 ≥ 0 and x∗
3 ≥ 0, we have x∗

1 ≤ 5.
It follows that

w∗
1 = 6 − x∗

1 + 2x∗
2 + x∗

3 ≥ 6 − x∗
1 + 0 + 0 ≥ 6 − 5 = 1.

Thus w∗
1 6= 0, so complementary slackness implies y∗

1 = 0.

6. (a) The dual of the given problem is

(D)

















minimize g = 5y1 + 4y2

subject to 3y1 + 4y2 ≥ 8

2y1 − y2 ≥ 3

− 2y1 + y2 ≥ 4

y1, y2, y3 ≥ 0

(b) If a vector (y1, y2, y3) is feasible in (D), then it makes true inequalities out of the last two
constraints, which add to give 0 ≥ 7. This is impossible, so problem (D) must be infeasible.
Our code for this is min(D) = +∞.

(c) Problem (P ) has a feasible origin, so max(P ) ≥ 0. Certainly that means max(P ) 6= −∞.

(d) In class, we showed that a discrepancy between min(D) and max(P ) can only happen when
min(D) = +∞ and max(P ) = −∞. This scenario is incompatible with our observation in (c),
so we must have max(P ) = min(D) = +∞. That is, problem (P ) must be unbounded.

7. (a) If the farmer plants x1 acres with corn, x2 acres with soy, and x3 acres with oats, her profit
will be

ζ = 40x1 + 30x2 + 25x3.
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UBC M340 Solutions for Problem Set #4 9

Constraints on land, labour, and capital (respectively) lead to the inequalities in the following
standard-form problem:

maximize ζ = 40x1 + 30x2 + 25x3

subject to x1 + x2 + x3 ≤ 120

6x1 + 6x2 + 3x3 ≤ 480

36x1 + 24x2 + 18x3 ≤ 3600

x1, x2, x3 ≥ 0

(b) The farmer’s plans to use all available land and labour imply w∗
1 = 0 and w∗

2 = 0 in the primal
slack definitions

w1 = 120 − x1 − x2 − x3

w2 = 480 − 6x1 − 6x2 − 3x3

w3 = 3600 − 36x1 − 24x2 − 18x3

The farmer’s conjectured crop choices suggest a primal optimum x∗ ∈ R
3 in which x∗

1 > 0,
x∗

2 = 0, and x∗
3 > 0. Putting x∗

2 = 0, w∗
1 = 0, and w∗

2 = 0 into the system above leads to

0 = w∗
1 = 120 − x∗

1 − x∗
3

0 = w∗
2 = 480 − 6x∗

1 − 3x∗
3

This has the unique solution x∗
1 = 40, x∗

3 = 80, leading to w∗
3 = 720.

We have a recipe for checking optimality of a proposed solution, and it requires familiarity
with the dual problem.

minimize ξ = 120y1 + 480y2 + 3600y3

subject to y1 + 6y2 + 36y3 ≥ 40

y1 + 6y2 + 24y3 ≥ 30

y1 + 3y2 + 18y3 ≥ 25

y1, y2, y3 ≥ 0

(i) [Primal Feasibility] Here x∗ = (40, 0, 80) ≥ (0, 0, 0) and w∗ = (0, 0, 720) ≥ (0, 0, 0), so x∗

is feasible in (P ).

(ii) [Complementary Slackness, I] We already know w∗
1 = 0 and w∗

2 = 0, so the only new
information comes from subscript 3: w∗

3 > 0 requires y∗
3 = 0.

(iii) [Complementary Slackness, II] We already know x∗
2 = 0, so the new information comes

from subscripts 1 and 3. Since x∗
1 > 0 and x∗

3 > 0, we must have z∗1 = 0 and z∗3 = 0, i.e.,

0 = z∗1 = y∗
1 + 6y∗

2 + 36y∗
3 − 40

0 = z∗3 = y∗
1 + 3y∗

2 + 18y∗
3 − 25

Using y∗
3 = 0 from part (ii) reduces this system to

y∗
1 + 6y∗

2 = 40

y∗
1 + 3y∗

2 = 25

The unique solution is y∗
1 = 10, y∗

2 = 5. Therefore the only possible candidate for dual
optimality is y∗ = (10, 5, 0). The corresponding dual slacks are z∗ = (0, z∗2 , 0), where

z∗2 = y∗
1 + 6y∗

2 + 24y∗
3 − 30 = 10.
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10 UBC M340 Solutions for Problem Set #4

(iv) Since y∗ = (10, 5, 0) ≥ (0, 0, 0) and z∗ = (0, 10, 0) ≥ (0, 0, 0), vector y∗ is dual-feasible.

Taken together, items (i)–(iv) confirm the primal optimality of x∗ = (40, 0, 80).

(c) Take b∗ = (b∗1, b
∗
2, b

∗
3)

def
= (120, 480, 3600) and let Z(b) denote the farmer’s maximum profit as

a function of b. For inputs near b∗, we have

∂Z

∂b1

∣

∣

∣

∣

b∗

= y∗
1 = 10,

∂Z

∂b2

∣

∣

∣

∣

b∗

= y∗
2 = 5,

∂Z

∂b3

∣

∣

∣

∣

b∗

= y∗
3 = 0.

These represent the rate at which small extra inputs boost the farmer’s bottom line. The
farmer will gain an advantage if she can buy more land for any price below $10/acre or more
labour for any price less than $5/hour. More capital is worthless to her ($0/dollar), because
she already has leftover capital under her current plan (w∗

3 = 720 dollars, to be precise). There
is no profit to be gained by getting more.

8. (a) Since x∗
1 + x∗

2 ≤ 5, we must have x∗
1 ≤ 5 and x∗

2 ≤ 5. This forces x∗
3 = 9, which reduces the

second constraint to
−x∗

1 + 2x∗
2 ≤ −5.

One of the variables on the left must be 0, and it can’t be x∗
1. Therefore x∗

1 = 5 and x∗
2 = 0.

The only choice that works is x∗ = (5, 0, 9).

(b) Here is the dual LP:
min 5y1 + 4y2 + 2y3

subject to y1 − y2 + y3 ≥ 7

y1 + 2y2 ≥ 5

y2 − y3 ≥ 2

y1, y2, y3 ≥ 0

(c) Perhaps, by sheer luck or intelligent design, the vector in (a) is optimal. Let’s check. (Drop
the stars.)

(i) [Primal feasibility.] Clearly (5, 0, 9) ≥ (0, 0, 0). In addition,

w1 = 5 − x1 − x2 = 0

w2 = 4 + x1 − 2x2 − x3 = 0

w3 = 2 − x1 + x3 = 6

These are all nonnegative, so x = (5, 0, 9) is feasible.

(ii) [Complementary Slackness, I] Since w3 > 0, we have y3 = 0.

(iii) [Complementary Slackness, II] Since x1 > 0 and x3 > 0, we must have z1 = 0 and z3 = 0,
where zj is the surplus variable for dual constraint number j. Taken together with y3 = 0,
we have the system

0 = z1 = y1 − y2 − 7

0 = z3 = y2 − 2

The second equation gives y2 = 2; the first then says y1 = 9.

(iv) [Dual Feasibility] The dual vector y = (9, 2, 0) obeys z1 = 0 and z3 = 0 by construction
in part (iii), and

z2 = y1 + 2y2 − 5 = 8 ≥ 0.
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UBC M340 Solutions for Problem Set #4 11

Therefore y is dual-feasible.

The steps above confirm that x = (5, 0, 9) is optimal for the primal problem and that y =
(9, 2, 0) is optimal for the dual. For any primal maximizer x∗, every dual solution must
be generated by the procedure we have shown. Uniqueness at every step guarantees that
y = (9, 2, 0) is the unique solution for the dual problem.

(d) The procedure just described works backwards, too. Starting with the dual solution y =
(9, 2, 0), the strict surplus z2 = 8 > 0 requires x2 = 0. Then, from y1 > 0 and y2 > 0, we get
the pair of primal requirements

0 = w1 = 5 − x1

0 = w2 = 4 + x1 − x3

These offer no alternatives: we are compelled to choose x1 = 5 and deduce x3 = 9. Thus the
primal maximizer is also unique.

Note: It is not obvious that uniqueness of the dual minimizer guarantees uniqueness of the
primal maximizer. Question 1 provides a counterexample. So part (d) of this exercise is not
vacuous . . . some nontrivial argument is required. (A well-formulated appeal to the nondegen-
eracy of the dual minimizer provides an attractive alternative to the approach above.)
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