M340(921) Solutions—Problem Set 3

(c) 2010, UBC Mathematics Department

1. Phase One: First rewrite the second inequality constraint in standard form, then build the auxiliary problem

maximize
$$w = -x_0$$

subject to $2x_1 + x_2 + x_3 - x_0 \le 2,$
 $-3x_1 - 4x_2 - 2x_3 - x_0 \le -8,$
 $x_1, x_2, x_3, x_0 \ge 0.$

A dictionary for this problem is

$$D_0: \qquad \begin{array}{rcl} x_4 = & 2 - 2x_1 - & x_2 - & x_3 + x_0 \\ x_5 = & -8 + 3x_1 + 4x_2 + 2x_3 + x_0 \\ \hline w = & - & x_0 \end{array}$$

The worst infeasibility here can be addressed by pivoting x_0 into the basis and x_5 out. The pivot equation is $x_0 = 8 - 3x_1 - 4x_2 - 2x_3 + x_5$. This leads to the feasible dictionary

$$D_1: \qquad \begin{array}{rcl} x_4 = & 10 - 5x_1 - 5x_2 - 3x_3 + x_5 \\ x_0 = & 8 - 3x_1 - 4x_2 - 2x_3 + x_5 \\ \hline w = & -8 + 3x_1 + 4x_2 + 2x_3 - x_5. \end{array}$$

Now x_2 enters and x_0 leaves (there is a tie between x_0 and x_4 : we select x_0 because we want it to be nonbasic). The pivot equation is $x_2 = (8 - 3x_1 - x_0 - 2x_3 + x_5)/4$. It leads to

$$D_2: \qquad \begin{array}{l} x_4 = 0 - (5/4)x_1 + (5/4)x_0 - (1/2)x_3 - (1/4)x_5 \\ x_2 = 2 - (3/4)x_1 - (1/4)x_0 - (1/2)x_3 + (1/4)x_5 \\ w = -x_0. \end{array}$$

This shows that the maximum value in the auxiliary problem equals 0, which means that there does exist a basic feasible solution for the original constraint system. The dictionary for this situation is formed by simply dropping all mention of x_0 from the previous dictionary, and re-calibrating the original objective function to match:

$$f = 3x_1 + 2x_2 + 3x_3 = 3x_1 + 2\left(2 - \frac{3}{4}x_1 - \frac{1}{2}x_3 + \frac{1}{4}x_5\right) + 3x_3 = 4 + \frac{3}{2}x_1 + 2x_3 + \frac{1}{2}x_5$$

Phase Two: Work on the original problem, starting with the feasible dictionary

$$D_3: \qquad \begin{aligned} x_4 &= 0 - (5/4)x_1 - (1/2)x_3 - (1/4)x_5\\ x_2 &= 2 - (3/4)x_1 - (1/2)x_3 + (1/4)x_5\\ \hline f &= 4 + (3/2)x_1 + 2x_3 + (1/2)x_5. \end{aligned}$$

Let x_3 enter the basis and x_4 leave (a degenerate pivot):

$$D_4: \qquad \begin{aligned} x_3 &= 0 - (5/2)x_1 - 2x_4 - (1/2)x_5\\ \frac{x_2 &= 2 + (1/2)x_1 + x_4 + (1/2)x_5}{f &= 4 - (7/2)x_1 - 4x_4 - (1/2)x_5. \end{aligned}$$

This is an optimal dictionary. It shows that the original problem has $f_{MAX} = 4$, attained at $(x_1, x_2, x_3) = (0, 2, 0)$.

(a) Every feasible solution (x_1, x_2, x_3) has $x_1 \leq 2$, so $2x_1 \leq 4$. Together with the first constraint, this implies

$$f = 2x_1 + (3x_1 + x_2 - x_3) \le 4 + (-2) = 2.$$

(Another approach is to write the dual problem and show that it has a feasible solution. This shows $\min(D) < +\infty$; since $\max(P) \le \min(D)$ in general, it follows that $\max(P) < +\infty$, as required.)

(b) Just staring at the constraints suggests the point $(x_1, x_2, x_3) = (0, 0, 2)$. This observation gets full marks, but leaves more work for part (c).

Recall that a "basic solution" is one that can be expressed using a dictionary. The given problem has m = 3 constraints, so there will be 3 constraint rows in the dictionary, so a BFS can have at most 3 nonzero values in the list of decision and slack variables. Thus the decision vector $\mathbf{x} = (1, 0, 5)$ is feasible but not basic, because the slack vector $\mathbf{s} = (0, 4, 1)$ has too many nonzero entries. By contrast, $\mathbf{x} = (2, 0, 4.5)$ is a BFS because $\mathbf{s} = (-1.5, 0, 0)$ has only one nonzero element.

A more systematic approach is to introduce an auxiliary variable $x_0 \ge 0$ and work on the "Phase One" problem

maximize
$$g = -x_0$$

subject to $3x_1 + x_2 - x_3 - x_0 \le -2$
 $3x_1 - x_2 - 2x_3 - x_0 \le -3$
 $x_1 - x_0 \le 2$
 $x_0, x_1, x_2, x_3 \ge 0$

This gives an infeasible initial dictionary:

$$x_{4} = -2 - 3x_{1} - x_{2} + x_{3} + x_{0}$$

$$x_{5} = -3 - 3x_{1} + x_{2} + 2x_{3} + x_{0}$$

$$x_{6} = 2 - x_{1} + x_{0}$$

$$f = -x_{0}$$

Pivot in x_0 and pivot out x_5 . This gives the first feasible dictionary:

$x_4 =$	1 - 1	$2x_2 - x_3 + x_5$
$x_0 =$	$3 + 3x_1 - $	$x_2 - 2x_3 + x_5$
$x_6 =$	$5 + 2x_1 - $	$x_2 - 2x_3 + x_5$
f = -	$-3 - 3x_1 + $	$x_2 + 2x_3 - x_5$

Now the largest-coefficient rule selects x_3 to enter and x_4 to leave:

$$\begin{aligned} x_3 &= 1 & -2x_2 - x_4 + x_5 \\ x_6 &= 3 + 2x_1 + 3x_2 + 2x_4 - x_5 \\ x_0 &= 1 + 3x_1 + 3x_2 + 2x_4 - x_5 \\ \hline f &= -1 - 3x_1 - 3x_2 - 2x_4 + x_5 \end{aligned}$$

2.

Now x_5 must enter, and x_0 must leave. This pivot solves the auxiliary problem:

A Basic Feasible Solution for the original problem is (0, 0, 2).

(c) In terms of the selected basic variables, the original objective is

$$f = 5x_1 + x_2 - x_3 = 5x_1 + x_2 - (2 + 3x_1 + x_2 + x_4) = -2 + 2x_2 - x_4$$

Therefore a feasible dictionary for the original problem is

 $x_{3} = 2 + 3x_{1} + x_{2} + x_{4}$ $x_{6} = 2 - x_{1}$ $x_{5} = 1 + 3x_{1} + 3x_{2} + 2x_{4}$ $f = -2 + 2x_{1} - x_{4}$

Pivot x_1 into the basis and x_6 out to attain optimality:

$$x_{3} = 8 - 3x_{1} + x_{2} + x_{4}$$

$$x_{1} = 2 - x_{6}$$

$$x_{5} = 7 - 3x_{6} + 3x_{2} + 2x_{4}$$

$$\overline{f} = 2 - 2x_{6} - x_{4}$$

The maximum value is 2, and a Basic Optimal Solution is (2, 0, 8).

The maximizer is not unique. Any value of $x_2 \ge 0$ compatible with the constraints is allowed. But none of the basic variables become negative as x_2 increases, so there is no upper limit to the possible size of x_2 . The complete set of solutions is the family

$$(x_1, x_2, x_3) = (2, x_2, 8 + x_2), \qquad x_2 \ge 0.$$

(Notice that the set of maximizers is unbounded, but the objective value is not. So this is not an "unbounded problem".)

- 3. The handout entitled "One Primal Simplex Pivot" provides convenient notation for this task.
 - (a) Recall the expanded form of dictionary D^0 in which the entering index E is highlighted:

$$\frac{f = v^{0} + c_{E}^{0} x_{E} + \sum_{j \in \mathcal{N}^{0} \setminus \{E\}} c_{j}^{0} x_{j}}{x_{i} = b_{i}^{0} - a_{iE}^{0} x_{E} - \sum_{j \in \mathcal{N}^{0} \setminus \{E\}} a_{ij}^{0} x_{j}} \quad (i \in \mathbb{B}^{0})$$
(3)

We have $b_E^0 \ge 0$ because the dictionary is feasible, and $c_E^0 > 0$ because index E is eligible to enter the basis. Also, since L is eligible to leave, $a_{LE}^0 > 0$.

The pivot equation in D^0 comes from line i = L:

$$x_L = b_L^0 - a_{LE}^0 x_E - \sum_{j \in \mathcal{N}^0 \setminus \{E\}} a_{Lj}^0 x_j.$$

Rearranging it (knowing that $a_{LE}^0 > 0$ helps us here) gives

$$x_{E} = \frac{1}{a_{LE}^{0}} \left(b_{L}^{0} - x_{L} - \sum_{j \in \mathcal{N}^{0} \setminus \{E\}} a_{Lj}^{0} x_{j} \right), \quad \text{so} \quad c_{E}^{0} x_{E} = \frac{c_{E}^{0}}{a_{LE}^{0}} \left(b_{L}^{0} - x_{L} - \sum_{j \in \mathcal{N}^{0} \setminus \{E\}} a_{Lj}^{0} x_{j} \right).$$

Plugging this back into the objective row of D^0 gives the objective row of D^+ :

$$f = v^{0} + \frac{c_{E}^{0}b_{L}^{0}}{a_{LE}^{0}} - \left(\frac{c_{E}^{0}}{a_{LE}^{0}}\right)x_{L} + \sum_{j \in \mathcal{N}^{0} \setminus \{E\}} \left(c_{j}^{0} - a_{Lj}^{0}\left(\frac{c_{E}^{0}}{a_{LE}^{0}}\right)\right)x_{j}$$

Check: the new nonbasic indices are $\mathcal{N}^+ = (\mathcal{N}^0 \setminus \{E\}) \cup \{L\}$, and each gets mentioned exactly once on the right side here.

- (b) In the updated dictionary D^+ , the coefficient of x_L is $c_L^+ = -c_E^0/a_{LE}^0$. We know both $c_E^0 > 0$ and $a_{LE}^0 > 0$ (see part (a)), so we have $c_L^+ < 0$. Therefore index L is not an eligible entering index in dictionary D^+ .
- **4.** Suppose we decide to blend x_1 tons of Carol's Road Mix, x_2 tons of Gord's Grits, and x_3 tons of pure salt into each ton of highway mixture. (Clearly each $x_i \ge 0$.) The constraints become

total mass involved:	$x_1 + $	$x_2 +$	$x_3 = 1.00$
mass of sand (tons):	$0.75x_1 + 0.0$	$60x_2$	≤ 0.70
mass of salt (tons):	$0.02x_1 + 0.02x_1 + 0.000$	$06x_2 + 1.$	$00x_3 \ge 0.10$
cost of ingredients:	$f = 50x_1 + 12$	$20x_2 + 8$	$00x_{3}$

Using the first equation, we can eliminate x_3 in favour of this pair of conditions:

$$x_3 = 1 - x_1 - x_2, \qquad x_1 + x_2 \le 1. \tag{(*)}$$

The cost of ingredients becomes $f = 800 - 750x_1 - 680x_2$; we can minimize this by maximizing $\zeta = 800 - f$. Substituting (*) into the constraints above leads to a standard problem in just two variables:

maximize
$$\zeta = 750x_1 + 680x_2$$

subject to $0.75x_1 + 0.60x_2 \le 0.70$
 $0.98x_1 + 0.94x_2 \le 0.90$
 $x_1 + x_2 \le 1.00$
 $x_1, x_2 \ge 0$

With the computer on our team, only some typing is left to do.

Optimal Solution: 2	z = 688.776; x1 =	0.918367, x2 = 0
---------------------	-------------------	------------------

We must do our own calculation of $x_3 = 1 - 0.91837 - 0 = 0.08163$ to complete the report.

Summary. The cheapest mixture combines 91.84% of Carol's Road Mix with 8.16% of pure salt. Its cost per ton is

$$f_{\min} = 800 - \zeta_{\max} = \$111.22$$

5. Suppose Sam buys x_1 , x_2 , and x_3 fans in April, May, and June, respectively, and sells w_1 , w_2 , and w_3 fans in these months. The supply and demand constraints translate into

$$x_i \le 450, \quad w_i \le 600, \qquad i = 1, 2, 3.$$
 (*)

Sam's cost for fans and revenue from sales are easy:

total fan cost:	$31x_1 + 33x_2 + 36x_3,$
total revenue from sales:	$40w_1 + 44w_2 + 48w_3$.

The number of fans unsold at the end of April is $h_1 \stackrel{\text{def}}{=} x_1 - w_1$; the number unsold at the end of May is $h_2 \stackrel{\text{def}}{=} (x_1 + x_2) - (w_1 + w_2)$. These must both be not larger than 300, i.e.,

$$x_1 - w_1 \le 300$$
 and $x_1 + x_2 - w_1 - w_2 \le 300$.

They also help determine Sam's

total storage costs: $2(x_1 - w_1) + 2(x_1 + x_2) - 2(w_1 + w_2) = 4x_1 + 2x_2 - 4w_1 - 2w_2$.

The number of fans unsold at the end of June (h_3) must be 0. This gives

$$0 = (x_1 + x_2 + x_3) - (w_1 + w_2 + w_3), \quad \text{i.e.}, \quad w_3 = x_1 + x_2 + x_3 - w_1 - w_2. \tag{(**)}$$

Using (**), we can eliminate w_3 throughout all the developments above, provided we continue to enforce $0 \le w_3 \le 600$ by a pair of constraints.

Sam's business issues lead to this standard problem:

maximize	$\zeta = 13x_1 + 1$	$3x_2 + 1$	$2x_3 - 4$	$4w_1 - $	$2w_2$
subject to	x_1		_	w_1	≤ 300
	$x_1 +$	x_2	_	$w_1 -$	$w_2 \le 300$
	$-x_{1} -$	$x_2 - $	$x_3 +$	$w_1 + $	$w_2 \leq 0$
	$x_1 + $	$x_2 +$	$x_3 - $	$w_1 - $	$w_2 \le 600$
	x_1				≤ 450
		x_2			≤ 450
			x_3		≤ 450
				w_1	≤ 600
					$w_2 \le 600$
	x_1, x_2	x_3, w_1 .	$w_2 > 0$)	

 $x_1, x_2, x_3, w_1, w_2 \ge 0$

The online solver crunches through this rapidly, giving

Optimal Solution: z = 15300; x1 = 450, x2 = 450, x3 = 450, w1 = 150, w2 = 600

Line (**) gives $w_3 = 600$; storage amounts (from above) are $h_1 = 300$, $h_2 = 150$, $h_3 = 0$.

The following strategy realizes Sam's maximum profit of \$15300:

	Buy	\mathbf{Sell}	Hold
Apr	450	150	300
May	450	600	150
Jun	450	600	0

6. (a) Define $y_2 = x_2 + 6$ and $y_3 = x_3 - 1$. With these choices, we have

$$x_2 \ge -6 \iff y_2 \ge 0$$
 and $x_3 \ge 1 \iff y_3 \ge 0$.

Substituting $x_2 = y_2 - 6$ and $x_3 = y_3 + 1$ puts the problem into the form

minimize
$$f = 129 - 6x_1 + 2y_2 - 9y_3$$

subject to $2x_1 - 6y_2 - y_3 \le -25$
 $x_1 + y_2 + 9y_3 \le -17$
 $x_1 \le 5$
 $x_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

The points minimizing f are the same ones that maximize $\zeta = 129 - f$. The desired standard-form problem is

maximize
$$f = 6x_1 - 2y_2 + 9y_3$$

subject to $2x_1 - 6y_2 - y_3 \le -25$
 $x_1 + y_2 + 9y_3 \le 17$
 $x_1 \le 5$
 $x_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

(b) The online simplex tool mentioned on the course web page finds

$$\zeta_{\text{max}} = 24.8491$$
 at $(x_1, y_2, y_3) = (5.0000, 5.7169, 0.69811).$

(c) Reversing the substitutions in part (a) gives

$$f_{\min} = 129 - \zeta_{\max} = 104.15$$
 at $(x_1, x_2, x_3) = (5.0000, -0.2831, 1.6981)$

7. (a) Let x_1, x_2 , and x_3 denote the number of Friendship, Romance, and Forgiveness bouquets the florist makes. Each of these must be nonnegative. The gross receipts from selling all types of arrangements will be

$$r = 5.5x_1 + 10.5x_2 + 13x_3.$$

The supply of roses makes some calculations simple.

Number of roses used:	$w_1 = 2x_1 + 6x_2 + 4x_3,$
75 dozen roses available:	$w_1 \le 900$
Cost of roses used $(\$)$:	$\gamma_1 = (14.40/12)w_1 = 2.4x_1 + 7.2x_2 + 4.8x_3.$

The carnation situation is more delicate. Let x_4 denote the number of expensive imported carnations used. The supply constraints give

Number of carnations used:	$w_2 = 5x_1 + 3x_2 + 12x_3,$
Available carnations (2 suppliers):	$w_2 \le 1020 + x_4, x_4 \le 780.$

The cost of carnations is more complicated. The cheap local ones cost \$5.40/12 = \$0.45 each, and the expensive imported ones cost \$9.00/12 = \$0.75 each. That's a surcharge of \$0.30 for the imported ones. Therefore

Cost of carnations used (\$): $\gamma_2 = 0.45w_2 + 0.30x_4$.

The profit in this business is the selling price minus the material costs, i.e., $\zeta = r - \gamma_1 - \gamma_2$. Eliminating w_1 and w_2 using the equations above, we arrive at this standard-form problem:

 $\begin{array}{lll} \mbox{maximize} & \zeta = 0.85x_1 + 1.95x_2 + 2.80x_3 - 0.30x_4 \\ \mbox{subject to} & 2x_1 + & 6x_2 + & 4x_3 & \leq & 900 \\ & & 5x_1 + & 3x_2 + & 12x_3 - & x_4 \leq & 1020 \\ & & & x_4 \leq & 780 \\ & & & x_1, x_2, x_3, x_4 \geq & 0 \end{array}$

(b) The online solver at http://www.zweigmedia.com/RealWorld/simplex.html responds well to the following input:

> maximize z = $0.85 \times 1 + 1.95 \times 2 + 2.80 \times 3 - 0.30 \times 4$ $5 \times 1 + 3 \times 2 + 12 \times 3 - \times 4 <= 1020$ $2 \times 1 + 6 \times 2 + 4 \times 3 <= 900$ $\times 4 <= 780$

Its one-line response is

Optimal Solution: z = 378; x1 = 0, x2 = 112, x3 = 57, x4 = 0

(c) The optimal business plan is to make no Friendship bouquets, 112 Romance arrangements, and 57 Forgiveness bouquets. This requires no carnations at all from Surrey; from the local suppliers the florist should order

> $w_1 = 2(0) + 6(112) + 4(57) = 900$ roses (that's 75 dozen), $w_2 = 5(0) + 3(112) + 12(57) = 1020$ carnations (that's 85 dozen).

Her profit will be \$378.00.

(d) If a dozen carnations from Surrey cost only \$1.20 more than a dozen carnations found locally, the surcharge for using each imported stem is only \$0.10. This changes the coefficient of x_4 in the objective function from -0.30 to -0.10. The new computed result is

Optimal Solution: z = 417; x1 = 0, x2 = 60, x3 = 135, x4 = 780

Now the florist can achieve a higher profit, \$417.00, by making 0 Friendship bouquets, 60 Romance bouquets, and 135 Forgiveness arrangements. This will consume

 $w_1 = 2(0) + 6(60) + 4(135) = 900$ roses (that's 75 dozen), $w_2 = 5(0) + 3(60) + 12(135) = 1800$ carnations (that's 85 + 65 dozen).

All 65 dozen carnations from Surrey will be required.