This examination has 14 pages including this cover.

UBC-SFU-UVic-UNBC Calculus Examination 6 June 2013, 12:00-15:00 PDT

Name:

Signature: _____

School:

Candidate Number: _____

Rules and Instructions

- 1. Show all your work! Full marks are given only when the answer is correct, and is supported with a written derivation that is orderly, logical, and complete. Part marks are available in every question.
- 2. Calculators are optional, not required. Correct answers that are "calculator ready," like $3 + \ln 7$ or $e^{\sqrt{2}}$, are fully acceptable.
- **3.** Any calculator compatible with the BC Ministry of Education's 2012/2013 Calculator Policy may be used.
- 4. Some basic formulas appear on page 2. No other notes, books, or aids are allowed. In particular, all calculator memories must be empty when the exam begins.
- 5. If you need more space to solve a problem on page n, work on the back of page n 1.
- **6.** CAUTION Candidates guilty of any of the following or similar practices shall be dismissed from the examination immediately and assigned a grade of 0:
 - (a) Using any books, papers or memoranda.
 - (b) Speaking or communicating with other candidates.
 - (c) Exposing written papers to the view of other candidates.
- 7. Do not write in the grade box shown to the right.

1	42
2	10
3	10
4	10
5	10
6	12
7	6
Total	100

UBC-SFU-UVic-UNBC Calculus Examination Formula Sheet for 6 June 2013

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	$5\pi/6$	π
$\sin heta$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
$\cos heta$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1/2	$-\sqrt{2}/2$	$-\sqrt{3}/2$	-1

Exact Values of Trigonometric Functions

Trigonometric Definitions and Identities

$\sin(-\theta) = -\sin\theta$	$\cos(-\theta) = \cos\theta$
$\sin(\theta \pm \phi) = \sin \theta \cos \phi \pm \sin \phi \cos \theta$	$\sin 2\theta = 2\sin\theta\cos\theta$
$\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$
$\sin^2\theta + \cos^2\theta = 1$	$\tan^2\theta + 1 = \sec^2\theta$
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	$\sec \theta = \frac{1}{\cos \theta}$
$\cot \theta = \frac{\cos \theta}{\sin \theta}$	$\csc\theta = \frac{1}{\sin\theta}$

[42] **1.** Short-Answer Questions. Write your answers in the boxes provided. Each question is worth 3 marks, but not all questions have equal difficulty. In this question, and throughout this exam, the answers have no point value unless correct supporting work is also shown.

(a) Evaluate
$$\lim_{x \to 9} \frac{x(\sqrt{x}-3)}{x-9}$$
.

ANSWER:

(b) Find
$$\int \frac{dx}{e^{4x}}$$
.

ANSWER:

(c) Find y', given $y = (e^{3x} + x)^{2013} \cos(x)$. ANSWER:

(e) The function $f(x) = b/(x^2 + ax + 2)$ has a local maximum at x = 1, and the local maximum value f(1) equals 2. Find the values of a and b.

ANSWER:

(f) Let $a = \sqrt{100 - (8 \times 10^{-15})}$ and $b = 10 - (4 \times 10^{-16})$. Choose the correct statement and write it in the box: a < b, a = b, a > b. Explain your choice in the work-space provided.

(g) Given that $f'(x) = 2x - (3/x^4)$ for x > 0, and f(1) = 3, find f(x) for x > 0. ANSWER:

(h) Find the equation of the line that is tangent to the curve $xy^2 + 2xy = 8$ at the point (1,2).

ANSWER:

Find the (x, y) coordinates of the highest point on the curve $y = \frac{8x}{1+4x^2}$. (i)

(j) Find all intervals, if any, on which the function below is increasing:

$$f(x) = \frac{1 + \ln(x+1)}{x+1}, \quad x > -1.$$

ANSWER:

(k) Find the constant k that satisfies these simultaneous conditions for some function y:

$$\frac{y'}{y} = k$$
, $y(0) = 2$, $y(10) = 100$.

ANSWER:

(l) A certain function f(x) with f(1) = 4 satisfies the identity

$$f'(x) = x (f(x))^2 + e^x, \qquad x > 0.$$

Find f''(1).

(m) Given a function f(x) that satisfies f'(3) = 5, evaluate this limit or determine that it does not exist:

$$\lim_{x \to 3} \frac{x^2 - 3x}{f(3) - f(x)}.$$

ANSWER:

(n) Find the constant k for which the limit L exists; write the values for both k and L in the answer box:

$$L = \lim_{x \to -\infty} \left(\sqrt{4x^2 + 3x} + kx \right).$$

Full-Solution Questions. In questions 2–7, justify your answers and show all your work. Simplification is not required unless explicitly requested.

[10] 2. A metal can in the shape of a cylinder with no top must be made to hold 64π cm³ of liquid. Find the dimensions of the can that minimize the area of the metal required. Be sure to show that your design is a true minimizer.

Hint: The metal used consists of a circle (the bottom of the can) and a rectangle (the sides of the can).

[10] 3. An idealized hourglass is made by joining two identical circular cones, each with base radius 12 cm and height 18 cm, at their vertices. A tiny hole allows water to drop from the upper cone into the lower one. At a certain instant, the depth of water in the upper cone is 6 cm, this depth is decreasing at a rate of 0.2 cm/min, and the water in the lower cone is 10 cm deep. How fast is the depth of water increasing in the lower cone? (The sketch below shows a snapshot of the situation.)

Hint: The volume of a right circular cone with base radius r and height h is $\frac{1}{3}\pi r^2 h$.

- [10] 4. The displacement of a point moving along a straight line is given by $s = f(t), t \ge 0$, where t is measured in seconds and s in meters. The point's acceleration function is a(t) = 10 4t. The point's initial position is f(0) = 0, and the point's velocity equals 0 at the instant when t = 2.
 - (a) Find the position function s = f(t).

(b) Find the total distance travelled by the point during the first 3 seconds.

(c) Express the total distance travelled by the point as a function of t, valid for all $t \ge 0$.

- [10] 5. Consider the plane curve $y = x^3 + 1$. Give this curve the name C.
 - (a) The line that is tangent to C at the point where x = 3 passes through (a, 0). Find a.

(b) We are looking for a point on C from which the tangent line passes through the point (2,0). Show how to use Newton's method to find the x-coordinate of such a point, and calculate two Newton steps starting from the initial guess x = 3.

(If you have a calculator, report decimal answers. If you don't, present a simplified rational answer for the first step and a "calculator-ready" expression for the second.)

[12] 6. A certain function f satisfies f(-1) = 0 and f'(x) = g(x), where the graph of g is shown below. Assume that g is positive-valued and concave up at all points not shown in the sketch. (The spacing between gridlines in the sketch is 1 unit.)

Answer questions (a)–(c) below without attempting to find an algebraic formula for f(x).

(a) Determine the intervals where f is increasing or decreasing, and the (x, y)-coordinates of all local maxima and minima (if any).

(b) Determine the intervals where f is concave up or down, and the (x, y)-coordinates of all inflection points (if any).

(c) Sketch the curve y = f(x), showing the features given in items (a)–(b) above and giving the (x, y) coordinates of all points occurring above and also all x-intercepts (if any).

y=f(x)			
	· · · · · · · · · · · · · · · · · · ·	У	· · · · · · · · · · · · · · · · · · ·
			X
			· · · · · · · · · · · · · · · · · · ·
			·····
· · · ·	· · · ·	I	· · · ·

- [6] 7. Prove both statements below. Include the names of any famous theorems you rely on.
 - (a) The equation $x + \ln |x| = 0$ has at least one solution for x in the open interval (-1, 1).

(b) The equation $x + \ln |x| = 0$ has exactly one solution for x in the open interval (-1, 1).