Short Key for 2004 Calculus Challenge Exam

Note: There is no attempt here to describe all possible correct answers. In many cases other approaches to a question could garner full marks.
For the examiners, apart from the accuracy of the answers, the crucial test is whether the student has made clear the principles and/or method being used and whether those principles and/or method are sound.

A longer key indicating alternative ways of attacking some of the problems will be posted later.
[3] 1. Evaluate $\lim _{t \rightarrow 0} \frac{4-(t+2)^{2}}{t}$

ANSWER:
-4

JUSTIFY YOUR ANSWER

Note that $\frac{4-(t+2)^{2}}{t}=-4-t$ for all $t \neq 0$. Therefore

$$
\lim _{t \rightarrow 0} \frac{4-(t+2)^{2}}{t}=\lim _{t \rightarrow 0}(-4-t)=-\left(\lim _{t \rightarrow 0} 4\right)-\left(\lim _{t \rightarrow 0} t\right)=-4-0 .
$$

[4] 2. Find a constant k such that

$$
y=2 x-k x^{2}
$$

ANSWER:
1
is a solution of the differential equation $x y^{\prime}=y-x^{2}$.

JUSTIFY YOUR ANSWER

Substituting $y=2 x-k x^{2}$ in the two sides of the differential equation we get LHS $=x(2-2 k x)=$ $2 x-2 k x^{2}$, and RHS $=2 x-k x^{2}-x^{2}=2 x-(k+1) x^{2}$. Note that the LHS and the RHS are the same function of x if and only if $2 k=k+1$, that is, if and only if $k=1$.
[6] 3. Let $f(x)=1-x^{2}$.
Working directly from the definition of the derivative as a limit, verify the formula:

$$
f^{\prime}(a)=-2 a
$$

SHOW YOUR WORK

Note that $\frac{\left(1-x^{2}\right)-\left(1-a^{2}\right)}{x-a}=-a-x$ for all $x \neq a$. Therefore

$$
\lim _{x \rightarrow a} \frac{\left(1-x^{2}\right)-\left(1-a^{2}\right)}{x-a}=\lim _{x \rightarrow a}(-a-x)=-\left(\lim _{x \rightarrow a} a\right)-\left(\lim _{x \rightarrow a} x\right)=-2 a .
$$

[4] 4. Let $f(x)$ denote the function defined by $f(x)= \begin{cases}\frac{1-e^{x}}{x} & \text { if } x \neq 0 \\ -1 & \text { if } x=0 .\end{cases}$
Show that $f(x)$ is continuous at $x=0$.

EXPLANATION

Using l'Hospital's rule and the continuity of e^{x}, we have

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1-e^{x}}{x}=\lim _{x \rightarrow 0} \frac{-e^{x}}{1}=-e^{\lim _{x \rightarrow 0} x}=-e^{0}=-1 .
$$

By definition it follows that f is continuous at 0 .
[3] 5. (a) Evaluate $\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+1}\right)$ and simplify your answer.
SHOW YOUR WORK Using the quotient rule, we have

> ANSWER: $\frac{4 x}{\left(x^{2}+1\right)^{2}}$

$$
\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}} .
$$

[3] (b) Evaluate $\frac{d}{d x}\left[\tan \left(e^{x}+1\right)\right]$.

$$
\begin{aligned}
& \text { ANSWER: } \\
& \qquad e^{x} \sec ^{2}\left(e^{x}+1\right)
\end{aligned}
$$

SHOW YOUR WORK: Using the rule for diferentiating composite functions, we have

$$
\frac{d}{d x} \tan \left(e^{x}+1\right)=\sec ^{2}\left(e^{x}+1\right) \frac{d}{d x}\left(e^{x}+1\right)=e^{x} \sec ^{2}\left(e^{x}+1\right) .
$$

[3] (c) Given that

$$
\sqrt{x^{2}+y^{2}}+\sqrt{x y}=3(1+\sqrt{2})
$$

find an expression for $d y / d x$ in terms of x, y.

$$
\begin{aligned}
& \text { ANSWER: } \\
& \qquad \frac{-\left(\frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{y}{2 \sqrt{x y}}\right)}{\left(\frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{x}{2 \sqrt{x y}}\right)}
\end{aligned}
$$

No simplification is necessary.

SHOW YOUR WORK: Differentiating implicitly, we get

$$
\frac{x+y(d y / d x)}{\sqrt{x^{2}+y^{2}}}+\frac{y+x(d y / d x)}{2 \sqrt{x y}}=0 .
$$

Solving for $d y / d x$ we get the answer in the answer box.
6. Consider the curve \mathcal{C} described by the equation:

$$
y^{2}=x^{3}+x^{2}
$$

[4] (a) Find the coordinates of the points of \mathcal{C} at which the tangent lines are parallel to the x-axis.

$$
\begin{aligned}
& \text { ANSWER: } \\
& (-2 / 3, \pm 2 /(3 \sqrt{3}))
\end{aligned}
$$

SHOW YOUR WORK: Differentiating we get $2 y(d y / d x)=3 x^{2}+2 x$. So for $d y / d x=0$ we need either $x=0$ or $x=-2 / 3$. Now, as we see in part (b), $x=0$ does not imply $d y / d x=0$. However, $x=-2 / 3$ does because the corresponding values of $y, y= \pm 2 /(3 \sqrt{3})$, are nonzero.
[4] (b) Find the equations of the tangents to \mathcal{C} at the origin $(0,0)$ and justify your answer.

ANSWER:

$$
y= \pm x
$$

JUSTIFICATION: Taking square roots see that near $x=0$ the curve consists of two parts $y=$ $x \sqrt{x+1}$ and $y=-x \sqrt{x+1}$. The first branch of the curve has tangent $y=x$ at $x=0$. The second branch of the curve has tangent $y=-x$ at $x=0$.

[6] 7. The following information is given about the function f :
$f(x), f^{\prime}(x), f^{\prime \prime}(x)$ are defined and continuous for all $x \neq 2$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=-1, \quad \lim _{x \rightarrow 2} f(x)=\infty \\
& f(1)=f(7)=0 \quad f^{\prime}(-1 / 2)=0 \quad f(0)=-7 / 4
\end{aligned}
$$

1,7 are the only zeros of $f(x) ;-1 / 2$ is the only zero of $f^{\prime}(x)$

$$
\begin{aligned}
& f^{\prime \prime}(x)<0 \text { for all } x \in(-\infty,-7 / 4), f^{\prime \prime}(-7 / 4)=0 \\
& f^{\prime \prime}(x)>0 \text { for all } x \text { in }(-7 / 4,2) \text { and all } x \text { in }(2, \infty)
\end{aligned}
$$

Using the axes provided above sketch the graph of $y=f(x)$ in a manner consistent with all the information.

No justification is required, but you may add comments if you wish.
[6] 8. (a) The sun is directly overhead at noon and sets at 6 p.m. Assuming that θ, the angle of elevation of the sun above the horizon, changes at a constant rate, show that, at 4 p.m., the length of the shadow cast by a 6 metre post is increasing at a rate of $\pi / 30$ metres per minute.

EXPLANATION: The angle of θ of elevation is $\pi / 2$ at noon and 0 at 6 p.m. Therefore $d \theta / d t=$ $-(\pi / 2) / 360=-\pi / 720$, and at 4 p.m. $\theta=\pi / 6$.
The length of the shadow is $L=6 \cot \theta$ metres. So its rate of increase is $d L / d t=-6 \operatorname{cosec}^{2} \theta(d \theta / d t)$ $=-6\left(2^{2}\right)(-\pi / 720)=\pi / 30$ metres per minute.
[6] (b) The pressure P, volume V, and temperature T of the gas in a spherical balloon of radius r are related by the universal gas equation

$$
P V=n R T
$$

where n is the number of moles of gas, and R is a constant. Here the temperature T is measured in Kelvins.
Let t be the elapsed time in hours. A variable x is said to be increasing at $a \%$ per hour if $\frac{1}{x} \frac{d x}{d t}=\frac{a}{100}$.
At the instant under consideration n is not changing, the temperature of the gas is increasing at 4% per hour, and the pressure of the gas is increasing at 1% per hour. Show that r, the radius of the balloon is also increasing at 1% per hour.

EXPLANATION: Let t denote elapsed time in hours. Taking natural logarithms,

$$
\ln P+\ln V=\ln (n R)+\ln T .
$$

Since $n R$ is constant, differentiating with respect to t, we get $\frac{1}{P} \frac{d P}{d t}+\frac{1}{V} \frac{d V}{d t}=0+\frac{1}{T} \frac{d T}{d t}$. It follows that $\frac{1}{V} \frac{d V}{d t}=\frac{3}{100}$. From $V=\left(4 \pi r^{3}\right) / 3$ it follows that $\frac{1}{V} \frac{d V}{d t}=\frac{3}{r} \frac{d r}{d t}$. So $\frac{1}{r} \frac{d r}{d t}=\frac{1}{100}$.
[4] 9. (a) Find the linear approximation of the function $\sqrt[3]{x}$ at $x=1000$ and use it to approximate $\sqrt[3]{1002}$.

```
ANSWER:
linearization: \(10+(1 / 300)(x-1000)\)
    \(\sqrt[3]{1002} \approx 10+(2 / 300)\)
```

SHOW YOUR WORK: The linearization of $f(x)$ at $x=a$ is $f(a)+(x-a) f^{\prime}(a)$. Here $a=1000$ and $f^{\prime}(a)=(1 / 3) a^{-2 / 3}=1 / 300$.
So $f(1002) \approx f(1000)+(2) f^{\prime}(1000)=10+(2 / 300)$.
[4] (b) Beginning with the initial estimate $x_{0}=10$ apply one step of Newton's Method to find an estimate for a root of $x^{3}-1002=0$.

ANSWER:

$$
x_{1}=10+(2 / 300)
$$

SHOW YOUR WORK: Given initial estimate $x_{0}=a$, the next estimate to a root of $f(x)=0$ is $x_{1}=a-\frac{f(a)}{f^{\prime}(a)}$. Take $f(x)=x^{3}-1002$ and $x_{0}=a=10$. Then $f(a)=-2$ and $f^{\prime}(a)=3 a^{2}=300$. So $x_{1}=10+(2 / 300)$.
10. Let $f(x)=\frac{1}{2} x^{4}-x^{3}-6 x^{2}+4 x$. $x=a$ is called a critical point of $f(x)$ if $f^{\prime}(x)=0$.
[2] (a) Find all the critical points of $f(x)$ given that one of them is $x=-2$.

ANSWER:

$$
-2, \frac{7 \pm \sqrt{33}}{4}
$$

SHOW YOUR WORK: Note that $f^{\prime}(x)=2 x^{3}-3 x^{2}-12 x+4$. Since -2 is given as a root we see that $f^{\prime}(x)=(x+2)\left(2 x^{2}-7 x+2\right)$. Solving the quadratic we get the roots:

$$
x=-2, \frac{7 \pm \sqrt{33}}{4}
$$

[3] (b) At which values of x, if any, does $f(x)$ have a local maximum?
At which values of x, if any, does $f(x)$ have a local minimum?

ANSWER:
local maximum(s): $[7-\sqrt{33}] / 4$
local minimum(s): $-2,[7+\sqrt{33}] / 4$

EXPLAIN: One can use the second-derivative test. However, let us look at the sign changes of $f^{\prime}(x)$ instead. Let $\alpha_{1}=-2, \alpha_{2}=(7-\sqrt{33}) / 4$, and $\alpha_{3}=(7+\sqrt{33}) / 4$. Then $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of $f^{\prime}(x)$ in increasing order, and $f(x)=2\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$. As x increases through α_{1} and α_{3}, $f^{\prime}(x)$ changes from negative to positive. So $f(x)$ has local minimums at $x=\alpha_{1}, \alpha_{3}$. As x increases through $\alpha_{2}, f^{\prime}(x)$ changes from positive to negative. So $f(x)$ has a local maximum at $x=\alpha_{2}$.
[3] (c) What is the largest interval on which $f(x)$ is concave down?

ANSWER:
$[-1,2]$

EXPLAIN: An easy calculation shows that $f^{\prime \prime}(x)=6(x+1)(x-2)$. "Concave down" means that $f^{\prime}(x)$ is decreasing. Now $f^{\prime}(x)$ is decreasing on $[-1,2]$ because $f^{\prime \prime}(x)$ is negative on $(-1,2)$. Also, any interval which contains a point not in $[-1,2]$ will contain a subinterval on which $f^{\prime}(x)$ is increasing. So $[-1,2]$ contains all intervals on which $f(x)$ is concave down.
11. The point $T=(t, 0)$ varies on the x-axis. The points $A=(a, h)$ and $B=(-a, h)$ are fixed with $a, h>0$. Define the function L by

$$
L(t)=\text { length }(A T)+\text { length }(B T)
$$

[4] (a) Express $L(t)$ in terms of t and the constants a, h.

ANSWER:

$$
L(t)=\sqrt{h^{2}+(t-a)^{2}}+\sqrt{h^{2}+(t+a)^{2}}
$$

EXPLANATION: Using the formula for the distance between two points in the plane, the first term is the length of $A T$ and the second is the length of $B T$.
[5] (b) Use calculus to show that $L(t)$ has an absolute minimum when $t=0$.
EXPLANATION: Note that

$$
\frac{d L}{d t}=\frac{t-a}{\sqrt{h^{2}+(t-a)^{2}}}+\frac{t+a}{\sqrt{h^{2}+(t+a)^{2}}}
$$

Therefore $d L / d t=0$ when $t=0$. Differentiating again we get

$$
\frac{d^{2} L}{d t^{2}}=\frac{h^{2}}{\left(h^{2}+(t-a)^{2}\right)^{3 / 2}}+\frac{h^{2}}{\left(h^{2}+(t+a)^{2}\right)^{3 / 2}}>0 \quad(-\infty<t<\infty)
$$

So $d L / d t$ is increasing on $(-\infty, \infty)$. It follows that $d L / d t<0$ for all $t<0$ and $d L / d t>0$ for all $t>0$. Thus $L(t)$ is decreasng on $(-\infty, 0]$, and increasing on $[0, \infty)$. This is enough.
[4] 12. (a) Find the general antiderivative of $\sin 2 x+\frac{2}{x^{2}}$.

ANSWER:

$$
-\frac{1}{2} \cos (2 x)-\frac{2}{x}
$$

SHOW YOUR WORK: Here we are exploiting the basic differentiation rules: $(d / d x)(\cos x)=-\sin x$ and $(d / d x)(1 / x)=-1 / x^{2}$.
[3] (b) Find a function y defined on $(0, \infty)$ such that

$$
\frac{d y}{d x}=\frac{2 x^{2}+1}{x}, y(1)=0 .
$$

ANSWER:

$$
y=x^{2}+\ln x-1
$$

SHOW YOUR WORK: Taking antiderivatives in the differential equation we get $y=x^{2}+\ln x+C$. To satisfy the condition $y(1)=0$ we take $C=-1$.
13. A tank of brine has 1000 litre capacity and initially contains 50 kilograms of salt dissolved in water.

Brine is drawn from the tank at rate of 5 litres per minute and water is added to the tank at the same rate to maintain the volume of solution at 1000 litres.

The tank is well-stirred so that the concentration of salt is uniform at all times.
Let S denote the amount of salt (in kilograms) in the tank after t minutes.
[2]
(a) What is the approximate net change ΔS in the amount of salt in the tank in the time interval $[t, t+\Delta t]$ if Δt is small?
Write your answer as a constant multiple of $S \Delta t$.

ANSWER:

$$
\approx-(1 / 200) S \Delta t
$$

SHOW YOUR WORK: In Δt minutes the proportion of the solution which is drawn from the tank is $(5 \Delta t) / 1000$. So the net change is $-(5 S \Delta t) / 1000$.
[2] (b) Write down an equation relating $d S / d t$ and

ANSWER:

$$
\frac{d S}{d t}=-S / 200
$$

SHOW YOUR WORK: From (a), $\Delta S \approx-(1 / 200) S \Delta t$. Dividing by Δt, we have

$$
\frac{\Delta S}{\Delta t} \approx-(1 / 200) S
$$

Taking the limit as $\Delta t \rightarrow 0$, we have $d S / d t=-S / 200$.
[4] (c) How many minutes pass before there are only 25 kilograms of salt in the tank?

ANSWER:
$t=200 \ln 2$

SHOW YOUR WORK: Writing the equation as $(1 / S) d S / d t=-1 / 200$ and taking antiderivatives with respect to t we get $\ln S=-t / 200+C$. Rewriting this we get $S=k e^{-t / 200}$, where k is constant. At $t=0, S=50$. So $k=50$. For $S=25$ we need $e^{-t / 200}=1 / 2$. Solving we get $t=200 \ln 2$.
[6] 14. An oval plate is symmetric about its axes, which are shown as $O x, O y$ in the figure. The midsection of the plate is a rectangle $B C E F$ of width 1 and height 2 .
The arc $A B$ of the bounding curve has the same shape as
 the arc $y=2 \sqrt{x}-x \quad(0 \leq x \leq 1)$. Indeed, the arc $A B$ is obtained by translating the arc $y=2 \sqrt{x}-x \quad(0 \leq x \leq 1)$ horizontally $3 / 2$ units to the left.

Show the area of the plate is $16 / 3$.
EXPLANATION: The basic principle is that, if $a<b$ and $f(x)$ is continuous on $[a, b]$, then the area 'under $y=f(x)$ from $x=a$ to $x=b$ ' is equal to $F(b)-F(a)$, where $F(x)$ is any antiderivative of $f(x)$.
Note that $\int(2 \sqrt{x}-x) d x=(4 / 3) x^{3 / 2}-(1 / 2) x^{2}+C$. Hence the area under arc $A B$ and above the x-axis is $(4 / 3)-(1 / 2)=5 / 6$. So total area of the plate is $4 \cdot(5 / 6)+\operatorname{area}(B C E F)=16 / 3$.

