UBC-SFU-UVic-UNBC Calculus Exam Solutions, June 2001

UBC Mathematics Resources by Philip D. Loewen

1. (a) Product Rule: $\frac{d}{d x}\left(e^{x} \tan x\right)=e^{x} \tan x+e^{x} \sec ^{2} x$.
(b) Chain Rule: $f^{\prime}(x)=2001\left(x^{2}+\sqrt{\frac{x-\pi}{7}}\right)^{2000}\left[2 x+\frac{1 / 7}{2 \sqrt{\frac{x-\pi}{7}}}\right]$.
(c) $g^{\prime}(t)=\frac{2}{t} \cos (2 \ln t), g^{\prime \prime}(t)=-\frac{4}{t^{2}} \sin (2 \ln t)-\frac{2}{t^{2}} \cos (2 \ln t)$, so $g^{\prime \prime}(1)=-2$.
(d) Quotient Rule: $\frac{d u}{d x}=\frac{\left[2 x \cos \left(x^{2}\right)\right]\left(1+\cos ^{2} x\right)-\sin \left(x^{2}\right)[-2 \cos x \sin x]}{\left(1+\cos ^{2} x\right)^{2}}$.
2. Parallel lines have equal slopes, so solve $\frac{1}{\sqrt{1-x^{2}}}=\frac{2}{\sqrt{3}}$ for $x= \pm \frac{1}{2}$.

Two points on the curve have the desired property, namely $\left(\frac{1}{2}, \frac{\pi}{6}\right)$ and $\left(-\frac{1}{2},-\frac{\pi}{6}\right)$.
3. By definition,

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{(3+h)^{2}}-\frac{1}{3^{2}}\right] \\
& =\lim _{h \rightarrow 0} \frac{-6-h}{(3+h)^{2}(3)^{2}}=-\frac{2}{27} .
\end{aligned}
$$

4. $1=y y^{\prime}=(k \sqrt{5 x+1})\left(\frac{5 k}{2 \sqrt{5 x+1}}\right)=\frac{5}{2} k^{2}$. Given $k>0$, conclude $k=\sqrt{\frac{2}{5}}$.
5. (a) Implicit differentiation gives $3^{x}(\ln 3)-2^{y}(\ln 2) y^{\prime}=0$. Plugging in $(x, y)=(2,3)$ gives the slope; the tangent line is

$$
y=3+\left(\frac{9 \ln 3}{8 \ln 2}\right)(x-2)
$$

(b) The original equation implies $2^{y}=3^{x}-1$. Substitution in (a) gives

$$
y^{\prime}=\frac{3^{x} \ln 3}{\left(3^{x}-1\right) \ln 2}=\frac{\ln 3}{\ln 2\left[1-3^{-x}\right]}
$$

As $x \rightarrow \infty, 3^{-x} \rightarrow 0$, so $y^{\prime} \rightarrow \frac{\ln 3}{\ln 2}$.
Another approach is to solve for $y=\ln \left(3^{x}-1\right) / \ln 2$ from the given equation and use direct methods to find either the tangent line in (a) or the limit in (b), or both.
6. Write y for the vertical distance from the bottom of the wall to the top of the ladder. Then the desired area is $A=\frac{1}{2} s y$, and Pythagoras gives $s^{2}+y^{2}=5^{2}$. These observations can be combined before or after differentiating, as follows.
(i) Solving for $y=\sqrt{25-s^{2}}$ leads to

$$
A=\frac{1}{2} s \sqrt{25-s^{2}}, \quad \text { so } \quad \frac{d A}{d t}=\frac{d A}{d s} \frac{d s}{d t}=\frac{1}{2}\left(\sqrt{25-s^{2}}-\frac{s^{2}}{\sqrt{25-s^{2}}}\right)\left(1+e^{-s}\right) .
$$

At the given instant, $y=3$ and $s=4$, so $\frac{d A}{d t}=-\frac{7}{6}\left(1+e^{-4}\right)$.
(ii) Differentiating $s^{2}+y^{2}=25$ gives

$$
2 s \frac{d s}{d t}+2 y \frac{d y}{d t}=0, \quad \text { i.e., } \quad \frac{d y}{d t}=-\frac{s}{y} \frac{d s}{d t}=-\frac{s}{y}\left(1+e^{-s}\right)
$$

Differentiating $A=\frac{1}{2} s y$ and substituting from the line above yields

$$
\frac{d A}{d t}=\frac{1}{2}\left(\frac{d s}{d t}\right) y+\frac{1}{2} s\left(\frac{d y}{d t}\right)=\frac{1}{2}\left(y-\frac{s^{2}}{y}\right)\left(1+e^{-s}\right),
$$

just as before.
Since $\frac{d A}{d t}<0$, the area is decreasing; its exact rate of change, in m^{2} / s, is $-\frac{7}{6}\left(1+e^{-4}\right)$.
7. The differential equation implies that $I(x)=I(0) e^{-k x}$. Measuring I in percent gives $I(0)=100$ and $I(1)=60$, so $k=-\ln (3 / 5)$. The desired thickness x, in mm , satisfies

$$
1=I(x)=100 e^{-k x}, \quad \text { i.e., } \quad x=\frac{\ln (100)}{\ln (5 / 3)} \approx 9.01515
$$

8. Since E is everywhere differentiable, the desired property is equivalent to the assertion that $E^{\prime}(t) \leq 0$ always. We prove this by computing E^{\prime} with the chain rule, then substituting from the given differential equation:

$$
\frac{d E}{d t}=2 y(t) y^{\prime}(t)+2 y^{\prime}(t) y^{\prime \prime}(t)=2 y^{\prime}(t)\left[y(t)+y^{\prime \prime}(t)\right]=2 y^{\prime}(t)\left[-c y^{\prime}(t)\right]=-2 c\left[y^{\prime}(t)\right]^{2} .
$$

The right side is nonpositive because $c \geq 0$ is given.
9. (a) $v=\frac{d s}{d t}=e^{-t}(\cos t-\sin t)>0 \Longleftrightarrow 0<t<\frac{\pi}{4} \quad$ (recall $\left.0<t<\pi\right)$.
(b) $a=\frac{d v}{d t}=-2 e^{-t} \cos t>0 \Longleftrightarrow \frac{\pi}{2}<t<\pi \quad($ recall $0<t<\pi)$.
10. (a) The line through $(2,2)$ and $(1,0)$ has slope 2 ; since it is tangent to the curve $y=f(x)$ at the point $(2,2)$, we have $f^{\prime}(2)=2$. (An algebraic solution is also possible: one rearranges Newton's update formula $x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$ to get $f^{\prime}\left(x_{0}\right)=2$.)
(b) Since $f^{\prime \prime}(x)<0$ always, the curve $y=f(x)$ is concave down. Hence it lies below its tangents, one of which we have just discussed. In particular, $f(1)<0$ while $f(2)=2>0$. Existence of $f^{\prime \prime}$ implies continuity of f, so the change in sign of f between $x=1$ and $x=2$ indicates that it must have a zero between these points.
11. Let r and h be the radius and height of the inscribed cylinder. Similar triangles give

$$
\frac{H-h}{r}=\frac{H}{R} \quad \text { or } \quad \frac{h}{R-r}=\frac{H}{R}
$$

Only one such equation is needed. Substituting it into the volume formula $V=\pi r^{2} h$ leads to one of

$$
V=\pi R^{2} H\left(\frac{r}{R}\right)^{2}\left(1-\frac{r}{R}\right) \quad \text { or } \quad V=\pi R^{2} H\left(\frac{h}{H}\right)\left(1-\frac{h}{H}\right)^{2} .
$$

We illustrate with the first: since $g(x)=x^{2}(1-x)$ has critical points at $x=0$ and $x=2 / 3$, and the first derivative test shows that the choice $x=2 / 3$ gives an absolute maximum for g over $0 \leq x \leq 1$, it follows that $r / R=2 / 3$, i.e., $r=(2 / 3) R$. The similar-triangles equation above then gives $h=(1 / 3) H$.
12. The function described here is decreasing and concave up for $x<-2$, decreasing and concave down for $-2<x<0$, decreasing and concave up for $0<x<2$, and increasing and concave up for $x>2$. A correct graph should show these features, and mention a (horizontal) point of inflection at $(-2,0)$, another point of inflection at $(0,-2)$, a local and absolute minimum at $(2, y)$ for some unknown $y<-2$, and an x-intercept at the point $(4,0)$.
13. (a) Note that $f^{\prime}(x)=12 x^{3}+12(k-2) x^{2}-6 k x, f^{\prime \prime}(x)=36 x^{2}+24(k-2) x-6 k$. Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-6 k$, the second derivative test implies that $x=0$ provides a local maximum for f when $k>0$, and a local minimum (in particular, no local maximum) when $k<0$. To settle the borderline case $k=0$, write

$$
f(x)=3 x^{4}-8 x^{3}=x^{3}(3 x-8) \quad[\text { case } k=0]
$$

Here $f(0)=0$, but $f(x)<0$ for small $x>0$ and $f(x)>0$ for small $x<0$, so there is no local maximum at $x=0$ when $k=0$. The desired k-values are exactly those satisfying $k>0$.
(b) Assuming $k>0$, the local minima are provided by the nonzero roots of

$$
f^{\prime}(x)=6 x\left[2 x^{2}+2(k-2) x-k\right] .
$$

By the quadratic formula, these are $-\frac{1}{2}(k-2) \pm \frac{1}{2} \sqrt{(k-2)^{2}+2 k}$, and the distance between them is

$$
s=\sqrt{(k-2)^{2}+2 k}
$$

(c) Elementary algebra gives

$$
s=\sqrt{\left(k^{2}-4 k+4\right)+2 k}=\sqrt{(k-1)^{2}+3}
$$

The choice $k=1$ clearly minimizes this over all real k; the restriction to $k>0$ is required to justify using the form of s derived in part (b).

