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Lior Silberman’s Math 223: Problem Set 10 (due 28/3/2022)

Practice problems
Section 5.1: all problems are suitable
Section 5.2: all problems are suitable

Calculation
M1. Find the characteristic polynomial of the following matrices.

(a)
(

5 7
−3 2

)
(b)
(

π e√
7 0

)
(c)


0 1

0 1
. . . . . .

0 1
−a0 · · · · · · −an−2 −an−1

.

M2. For each of the following matrices find its spectrum and a basis for each eigenspace.

(a)

5 4 2
4 5 2
2 2 2

 (b) 1
3

2 1 0
1 1 1
0 1 2

.

Projections
Fix a vector space V .

1. Let T,T ′ ∈ End(V ) be similar. Show that pT (x) = pT ′(x). (Hint: show that x Id−T , x Id−T ′ are
similar)

2. Let T ∈ End(V ).
(a) Let p ∈ R[x], and let v ∈ V be an eigenvector of T with eigenvalue λ . Show that v is an eigen-

vector of p(T ) with eigenvalue p(λ ).
(b) Suppose p(T ) = 0. Show that p(λ ) = 0 for all eigenvalues λ of V .
(c) Show that the only eigenvalue of a nilpotent map is 0.

3. Let P ∈ End(V ) satisfy P2 = P. Such maps are called projections.
(a) Apply problem 2(b) to show that Spec(P)⊂ {0,1}.
REVIEW In the extra credit part of PS5 we showed that the the eigenspaces V0 and V1 of a projection

span V (we call P the projection onto V1 along V0) and conversely that for any decomposition
V =V0⊕V1 there is a unique projection for which these are the eigenspaces.

(b) Let V0 = Span


1

2
3

 V1 = Span


4

5
6

 ,

1
0
1

 so that R3 =V0⊕V1 [no need to check this

separately]. Let P be the projection onto V1 along V0. Find the matrix of P with respect to the
standard basis of R3.

Hint: By diagonalization P = S

0
1

1

S−1 where S is the matrix of eigenvectors.
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The Quantum Harmonic Oscillator, I
PRAC In physics a “parity operator” is a map R ∈ End(V ) such that R2 = I (we use the shorthand

I = IdV ).
RMK This was problem 4, but it is for practice, not for submission.
(a) Show that ±I are (uninteresting) parity operators.
— For parts (b)-(d) fix a parity operator R.
(b) Show that the eigenvalues of R are in {±1}; let V± be the corresponding eigenspaces.
(c) Show that I+R

2 , I−R
2 are the projections onto V+,V− along the other subspace, respectively.

Hint: compute (I +R)2 using that R2 = I.
(d) Conclude that V =V+⊕V− and hence that every parity operator is diagonalizable.
(e) Let X be a set and let τ : X→X be an involution: a map such that τ2 = idX (identity permutation).

Let Rτ ∈ End(RX) be the linear map f 7→ f ◦ τ . Show that Pτ is a parity operator.
(f) Let X = R, τ(x) =−x. Explain how (b)-(e) relate to the concepts of odd and even functions.

5. Let V =
{

p(x)e−x2/2 | p ∈ R[x]
}

and for n ≥ 1 let Vn =
{

p(x)e−x2/2 | p ∈ R[x]<n
}
⊂ V . Let H ∈

C∞(R) be the operator (“quantum Hamiltonian”) H =−D2+Mx2 . Concretely we have H f =−d2 f
dx2 +

x2 f .
PRAC Show that Vn ⊂V are subspaces of C∞(R), the space of infinitely differentiable functions.
(a) Show that HV ⊂V and HVn ⊂Vn.
(b) Let Hn = H �Vn∈ End(Vn) be the restriction of H to Vn. Show that Hn has an upper-triangular

basis with respect to an appropriate basis of Vn and determine its eigenvalues.
(c) Show that Hn is diagonable.
(d) Show that HR = RH for the parity operator of 4(f).
(*e) Show that every eigenfunction of Hn is either even or odd. Which is which?
(f) Show that V =

{
p(x)e−x2/2 | p ∈ R[x]

}
has a basis of eigenfunctions of H, and that each eigen-

function is either even or odd.
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Extra credit: the generalized eigenvalue decomposition and the Cayley–Hamilton Theorem

Fix a vector space V and a linear map T ∈ EndF(V ).
A. DEF For a number λ define the generalized λ -eigenspace to be the set of vectors v ∈ V killed by

some power of T −λ (possibly depending on v):

Ṽλ =
{

v ∈V | ∃k : (T −λ )kv = 0
}
.

(a) Show that Ṽλ is a subspace containing Vλ .
(b) Show that Ṽλ 6= {0} iff Vλ 6= {0} (“every generalized eigenvalue is a regular eigenvalue”).
(c) Show that Vλ and Ṽλ are T -invariant: if v ∈ Ṽλ then T v ∈ Ṽλ as well, and similarly for Vλ .
(d) Let µ 6= λ . Show that T �Ṽλ

−µ ∈ End(Ṽλ ) is injective (“no other eigenvalues in Ṽλ except
λ”). Using a factorization into linear terms conclude that for any polynomial p if p(λ ) 6= 0 then
p
(

T �Ṽλ

)
∈ End(Ṽλ ) is injective there.

(**e) Show that
{

Ṽλ

}
λ∈Spec(T ) are linearly independent.

COR The sum Ṽ =
⊕

λ∈Spec(T ) Ṽλ is direct.

B. Continuing the previous problem, suppose now that V is finite-dimensional.

(a) Show that pT �Ṽ
λ

(x) = (x−λ )dimṼλ and that
(

T �Ṽλ
−λ

)dimṼλ

= 0Ṽλ
.

(b) Let m(x) = ∏λ∈Spec(T ) (x−λ )dimṼλ . Show that m(x) = pT �Ṽ
(x) and that m(T �Ṽ ) = 0.

(c) Suppose that Ṽ 6=V . Show that setting T̄ (v+Ṽ ) = T v+Ṽ gives a well-defined linear map T̄ on
the quotient vector space W =V/Ṽ .

(d) Let µ be a root of pT̄ (x), and let Wµ ⊂W be the corresponding eigenspace. Show that ∏λ∈Spec(T )\{µ}(T̄−
λ )dimṼλ is an invertible map there. Conclude that if v+Ṽ ∈Wµ with v /∈ Ṽ then u=∏λ∈Spec(T )\{µ}(T−
λ )dimṼλ v /∈ Ṽ but u+Ṽ ∈Wµ .

(e) Suppose µ is not an eigenvalue of T . Show that (T −µ)u = 0, a contradiction to u /∈ Ṽ .
Hint: In this case the polynomial in the definition of u is exactly m(T )).

(f) Suppose µ is an eigenvalue of T . Show that (T −µ)1+dimṼµ u = 0 showing that u ∈ Ṽµ ⊂ Ṽ , a
contradiction.

C. It follows that V = Ṽ so that T �Ṽ= T . Problem B(b) now gives two corollaries:
(a) The algebraic multiplicity of λ ∈ Spec(T ) is equal to dimṼλ (and since Vλ ⊂ Ṽλ we get a new

proof that the algebraic multipicity is at least the geometric multiplicity).
(b) (Cayley–Hamilton Theorem) pT (T ) = 0.


