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Lior Silberman’s Math 223: Problem Set 10 (due 28/3/2022)

Practice problems

Section 5.1: all problems are suitable
Section 5.2: all problems are suitable

Calculation
M1. Find the characteristic polynomial of the following matrices.
0 1
5 7 01
T e
(a) (_3 2) (b) (\/7 O) (c) -
0 1
_aO o .. Y —an_z _an_l

M2. For each of the following matrices find its spectrum and a basis for each eigenspace.

542 210
@ [4 52|®if1 11
222 01 2

Projections
Fix a vector space V.

1. Let T,T' € End(V) be similar. Show that py(x) = pz/(x). (Hint: show that xId—7, xId—T" are
similar)

2. LetT € End(V).
(a) Let p € R[x], and let v € V be an eigenvector of T with eigenvalue A. Show that v is an eigen-
vector of p(T) with eigenvalue p(1).
(b) Suppose p(T) = 0. Show that p(A) = 0 for all eigenvalues A of V.
(c) Show that the only eigenvalue of a nilpotent map is O.

3. Let P € End(V) satisfy P> = P. Such maps are called projections.
(a) Apply problem 2(b) to show that Spec(P) C {0,1}.
REVIEW In the extra credit part of PS5 we showed that the the eigenspaces Vy and V; of a projection
span V (we call P the projection onto V| along Vj) and conversely that for any decomposition
V =V & V] there is a unique projection for which these are the eigenspaces.

1 4 1
(b) Let Vp = Span 2 Vi = Span 51,10 so that R3 = V, @ V; [no need to check this
3 6 1

separately]. Let P be the projection onto V; along Vj. Find the matrix of P with respect to the

standard basis of R3.
0

Hint: By diagonalization P = § 1 S~! where S is the matrix of eigenvectors.
1
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The Quantum Harmonic Oscillator, I
PRAC In physics a “parity operator” is a map R € End(V) such that R = I (we use the shorthand
I =1dy).
RMK This was problem 4, but it is for practice, not for submission.
(a) Show that £/ are (uninteresting) parity operators.
— For parts (b)-(d) fix a parity operator R.
(b) Show that the eigenvalues of R are in {4-1}; let V4. be the corresponding eigenspaces.
(c) Show that ”TR, I_TR are the projections onto V.., V_ along the other subspace, respectively.
Hint: compute (I+ R)? using that R? = 1.
(d) Conclude that V =V, & V_ and hence that every parity operator is diagonalizable.
(e) LetX beasetandlet 7: X — X be an involution: a map such that 72 =idy (identity permutation).
Let R; € End(R¥) be the linear map f +— f o 7. Show that P; is a parity operator.
(f) LetX =R, 7(x) = —x. Explain how (b)-(e) relate to the concepts of odd and even functions.

5. LetV = {p(x)e‘"z/2 |pe R[x]} and forn > 1 letV, = {p(x)e‘xz/2 |pe R[x]<”} CV. LetH €

C>(R) be the operator (“quantum Hamiltonian”) H = —D? +M,>. Concretely we have Hf = — &f

dx?
X2 f.
PRAC Show that V,, C V are subspaces of C*(IR), the space of infinitely differentiable functions.
(a) Show that HV C V and HV,, C V.
(b) Let H, = H [y, € End(V,) be the restriction of H to V,,. Show that H, has an upper-triangular
basis with respect to an appropriate basis of V,, and determine its eigenvalues.
(c) Show that H, is diagonable.
(d) Show that HR = RH for the parity operator of 4(f).
(*e) Show that every eigenfunction of H,, is either even or odd. Which is which?

(f) Show that V = { p(x)e_xz/ 2| pe R[x]} has a basis of eigenfunctions of H, and that each eigen-
function is either even or odd.
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Extra credit: the generalized eigenvalue decomposition and the Cayley-Hamilton Theorem

Fix a vector space V and a linear map 7' € Endg (V).

. DEF For a number A define the generalized A-eigenspace to be the set of vectors v € V killed by
some power of T'— A (possibly depending on v):

VA:{EEVHk: (T—?L)ky:Q}.

(a) Show that V;L is a subspace containing V.

(b) Show that V; # {0} iff V) # {0} (“every generalized eigenvalue is a regular eigenvalue”).

(c) Show that V; and V, are T-invariant: if v € V then Tv € V; as well, and similarly for V.

(d) Let u # A. Show that T [ —u € End(V)) is injective (“no other eigenvalues in V) except
A”). Using a factorization mto linear terms conclude that for any polynomial p if p(4) # 0 then

p (T [VJ € End(V,) is injective there.
(**e) Show that {Vl } AeSpec(r) A€ linearly independent.
COR The sum V = D espec(r) V), is direct.

Continuing the previous problem, suppose now that V' is finite-dimensional.
. dimV,
(a) Show that pT[Vl (X) _ (X— l)dlmv/l and that (T rV)L —)u> 2

(b) Let m(x) = [T1espec(r) (€ — )™, Show that m(x) = pry, (x) and that m (T Jy) = 0.

(c) Suppose that V # V. Show that setting 7' (v + V) = Tv+V gives a well-defined linear map 7 on
the quotient vector space W =V /V.

(d) Let .‘LL l?e aroot of p7(x), and let W, C W be the corresponding eigenspace. Show that [] AeSpec(T)\ {1} (T
A)%mVi is an invertible map there. Conclude that if y+V € Wy, with v ¢ V then u = [Tj espec(r)\ (u} (T —
A)4mVay ¢ V butu+V € Wy,.

(e) Suppose i is not an eigenvalue of T. Show that (T — u)u = 0, a contradiction to u ¢ V.

Hint: In this case the polynomial in the definition of u is exactly m(T)).

IHdimVe , — 0 showing thatu € V, CV, a

=0y, .

(f) Suppose u is an eigenvalue of 7. Show that (7 — u)
contradiction.

It follows that V =V so that T [y=T. Problem B(b) now gives two corollaries:

(a) The algebraic multiplicity of A € Spec(T') is equal to dimV} (and since V; C V; we get a new
proof that the algebraic multipicity is at least the geometric multiplicity).

(b) (Cayley—Hamilton Theorem) pr(T) = 0.



