Loops, L-spaces, and left-orderability

Joint work with Jonathan Hanselman

Liam Watson University of Glasgow

www.maths.gla.ac.uk/~lwatson

EMS/SCM Barcelona May 30, 2015

Prelude: The motivating theorem

Theorem

Suppose Y is a closed, orientable three-manifold admitting a decomposition $Y \cong M_1 \cup M_2$ where the M_i are Seifert fibred spaces with torus boundary.

Prelude: The motivating theorem

Theorem

Suppose Y is a closed, orientable three-manifold admitting a decomposition $Y \cong M_1 \cup M_2$ where the M_i are Seifert fibred spaces with torus boundary. Then the following are equivalent:

- (1) Y is an L-space
- (2) $\pi_1(Y)$ cannot be left-ordered
- (3) Y does not admit a co-orientable taut foliation

Prelude: The motivating theorem

Theorem [Boyer-Clay, Hanselman-W.]

Suppose Y is a closed, orientable three-manifold admitting a decomposition $Y \cong M_1 \cup M_2$ where the M_i are Seifert fibred spaces with torus boundary. Then the following are equivalent:

- (1) Y is an L-space (that is, Y it has simplest-possible Heegaard Floer homology)
- (2) $\pi_1(Y)$ cannot be left-ordered (that is, the fundamental group does not act nicely on \mathbb{R})
- (3) Y does not admit a co-orientable taut foliation (that is, no foliation by surfaces admitting a closed loop meeting every leaf transversally)

LOOPS

$$\rho_1$$
 ρ_2 ρ_3

...associated with a torus.

A-decorated graphs

An \mathcal{A} -decorated graph is a directed graph with Vetex set labeled by one of the idempotents ι_0 or ι_1 ; and Edge set labeled by one of the algebra elements ρ_1 , ρ_2 , ρ_3 , ρ_{12} , ρ_{23} , or ρ_{123} (consistent with the edge-orientations).

\mathcal{A} -decorated graphs

An \mathcal{A} -decorated graph is a directed graph with Vetex set labeled by one of the idempotents ι_0 or ι_1 ; and

Edge set labeled by one of the algebra elements ρ_1 , ρ_2 , ρ_3 , ρ_{12} , ρ_{23} , or ρ_{123} (consistent with the edge-orientations).

A loop is a **valence 2** A-decorated graph – subject to certain restrictions.

Differential modules

Any loop describes a (left) differential module over \mathcal{A} : Consider the \mathbb{F} -vector space generated by the vertex set; the differential determined by the edge set.

For example:

$$\partial(x) = \rho_3 \cdot u + \rho_{123} \cdot v$$

$$\partial^2(x) = \rho_3 \cdot \partial(u) + \rho_{123} \cdot \partial(v)$$

$$= \rho_3 \rho_2 \cdot u' + \rho_{123} \rho_{23} \cdot v'$$

$$= 0$$

Consequently: $\partial^2 = 0$ places an *a priori* restriction on loops.

Puzzle-piece restrictions

This loop, as a cyclic word:

$$(a_1b_1\bar{d}_2)=(d_2\bar{b}_1\bar{a}_1)$$

Heegaard Floer theory

Given a closed, orientable three-manifold Y, Heegaard Floer homology assigns a chain complex $\widehat{\mathsf{CF}}(Y)$ (over \mathbb{F}) that depends on a choice of Heegaard splitting of Y. The homology $\widehat{\mathsf{HF}}(Y)$ is an invariant of Y.

If $Y \cong M_1 \cup M_2$ (where ∂M_i is a torus) then bordered Heegaard Floer homology provides:

$$\widehat{\mathsf{CF}}(Y) \cong \widehat{\mathsf{CFA}}(M_1) \boxtimes \widehat{\mathsf{CFD}}(M_2)$$

Heegaard Floer theory

More precisely, suppose $Y\cong M_1\cup_h M_2$ where the homeomorphism h is determined by $\alpha_1\mapsto\beta_2$ and $\beta_1\mapsto\alpha_2$. Write this instead as

$$Y\cong (M_1,\alpha_1,\beta_1)\cup (M_2,\alpha_2,\beta_2).$$

Each triple (M_i, α_i, β_i) is a *bordered* three-manifold, meaning $\langle \alpha_i, \beta_i \rangle \cong H_1(\partial M_i; \mathbb{Z})$. Now

$$\widehat{\mathsf{CF}}(\mathsf{Y}) \cong \widehat{\mathsf{CFA}}(\mathsf{M}_1, \alpha_1, \beta_1) \boxtimes \widehat{\mathsf{CFD}}(\mathsf{M}_2, \alpha_2, \beta_2)$$

where

 $\widehat{\mathsf{CFA}}(M_1, \alpha_1, \beta_1)$ is a right A_∞ -module over \mathcal{A} ; and $\widehat{\mathsf{CFD}}(M_2, \alpha_2, \beta_2)$ is a left differential module over \mathcal{A} .

Loop-type manifolds

Definition

A bordered three-manifold (M, α, β) is loop-type if $\widehat{\mathsf{CFD}}(M, \alpha, \beta)$ is (up to homotopy) described by a loop.

Remark

It's not obvious, but this is not dependent on the bordered structure: (M, α, β) is loop-type if and only if (M, α', β') is.

Let K be the left-hand trefoil and set

$$M = S^3 \setminus \nu(K)$$

Consider the bordered manifold

$$(M, \mu, \lambda)$$

where μ is the knot meridian and λ is the Seifert longitude.

Then $\widehat{\mathsf{CFD}}(M,\mu,\lambda)$ is described by the loop

which is equivalent to the cyclic word

$$(a_1b_1\bar{d}_2)=(a_1b_1c_{-2})$$

Then $\widehat{\mathsf{CFD}}(M,\mu,\lambda)$ is described by the loop

Note: Typically sensitive to the bordered structure:

$$\widehat{\mathsf{CFD}}(M, \mu, \lambda - n\mu) = (\mathsf{a}_1 \mathsf{b}_1 \mathsf{c}_{n-2})$$

Remark: K is a torus knot, that is, K is isotopic to a regular fibre in a Seifert fibration of S^3 . As a result, M admits a Seifert structure with base orbifold $D^2(2,3)$. This structure restricts to a foliation of ∂M by circles isotopic to the slope $\lambda - 6\mu$.

The twisted *I*-bundle over the Klein bottle *N* may be constructed as follows:

Attach a $D^2 \times I$ to the genus two handlebody by a homeomorphism sending $\partial D^2 \times \{\text{pt}\}$ to the curve c.

Check: The fundamental group $\pi_1(N)$ has presentation

$$\langle a, b | a^2 b^2 \rangle$$

$$\pi_1(N) \cong \langle a, b | a^2 b^2 \rangle$$

Exersises:

- (1) ∂N is a torus;
- (2) *N* is Seifert fibred over $D^2(2,2)$ with regular fiber $\varphi \simeq [b^2]$; and
- (3) N is Seifert fibred over a Mobius strip with regular fiber $\lambda \simeq [ab]$.

Consider the bordered manifold

$$(N, \varphi, \lambda)$$

Then $\widehat{\mathsf{CFD}}(\mathit{N}, \varphi, \lambda)$ is represented by

and the components of this loop may be represented by $(d_0d_0)=(ee)$ and $(d_1d_{-1})=(d_1\bar{c}_1)$.

Interesting feature:

Proposition

$$\widehat{\mathsf{CFD}}(N, \varphi, \lambda) \cong \widehat{\mathsf{CFD}}(N, \varphi + n\lambda, \lambda)$$

Key first step

Theorem [Hanselman-W.]

Any Seifert fibred rational homology solid torus is loop-type. In particular, if M is Seifert fibred over a disk or a Mobius strip, it is loop-type.

L-SPACES

Manifolds with simple Heegaard Floer homology

For rational homology spheres: $\dim \widehat{\mathsf{HF}}(Y) \geq |H_1(Y;\mathbb{Z})|$

Definition

An L-space is rational homology sphere for which

$$\dim \widehat{\mathsf{HF}}(Y) = |H_1(Y; \mathbb{Z})|$$

Examples:

- (1) Lens spaces;
- (2) manifolds with finite fundamental group; and
- (3) the two fold branched cover of any alternating knot.

An interesting property

Examples:

- (1) Lens spaces;
- (2) manifolds with finite fundamental group; and
- (3) the two fold branched cover of any alternating knot.

Theorem [Ozsváth-Szabó]

L-spaces do not admit co-orientable taut foliations.

L-space slopes

Let M be a three-manifold with torus boundary. A slope is an isotopy class of an essential, simple closed curve in ∂M . Let $M(\gamma)$ denote the closed manifold resulting from Dehn filling along γ . Define

$$\mathcal{L}_{M} = \{ \gamma \mid M(\gamma) \text{ is an L-space} \}$$

Problem: Given M, describe the set \mathcal{L}_M .

Note that \mathcal{L}_M may be identified with *some* subset of $\mathbb{Q} \cup \{\frac{1}{0}\}$. In particular, given (M, α, β) , orient each curve and set

$$p\alpha + q\beta \iff \frac{p}{q}$$

\mathcal{L}_M when M is loop-type

The idea is to develop a *loop calculus*, in order to prove things like:

Proposition

Suppose $\widehat{\mathsf{CFD}}(M,\alpha,\beta)$ is a loop. Then $M(\alpha)$ is an L-space if and only if each connected component of the associated graph can be expressed as a cyclic word with at least one d_k and no c_k (where k ranges over the integers).

Check:

- (1) The left-hand trefoil exterior (M, μ, λ) had $(d_2b_1a_1)$, and indeed $M(\mu) \cong S^3$.
- (2) The twisted I-bundle over the Klein bottle (N, φ, λ) had $(d_0d_0)(d_1d_{-1})$, and indeed $N(\varphi) \cong RP^3 \# RP^3$.

The effect of a Dehn twist

Proposition

Given a cyclic word in $\{a_k, b_k, c_k, d_k\}$ representing the differential module $\widehat{\mathsf{CFD}}(M, \alpha, \beta)$, the effect of a Dehn twist producing $\widehat{\mathsf{CFD}}(M, \alpha, \alpha + \beta)$ is obtained by

$$a_k \mapsto a_k, \quad b_k \mapsto b_k, \quad c_k \mapsto c_{k-1}, \quad d_k \mapsto d_{k+1}$$

These results form the basis for a complete characterization of \mathcal{L}_M when M is loop-type.

A gluing result

Theorem [Hanselman-W.]

Suppose M_1 and M_2 are loop-type manifolds (other than the solid torus), and consider three-manifold $Y \cong M_1 \cup_h M_2$. If for each slope γ on ∂M either $\gamma \in \mathcal{L}_{M_1}^{\circ}$ or $h(\gamma) \in \mathcal{L}_{M_2}^{\circ}$ then Y is an L-space.

Sample calculation:

Theorem [Boyer-Gordon-W.]

Let N be the twisted I-bundle over the Klein bottle and suppose $Y \cong N \cup N$ is a rational homology sphere. Then Y is an L-space.

LEFT-ORDERABILITY

What is an L-space?

Let Y be an closed, orientable, irreducible three-manifold.

Conjecture [Boyer-Gordon-W.]

Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.

What is an L-space?

Let Y be an closed, orientable, irreducible three-manifold.

Conjecture [Boyer-Gordon-W.]

Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.

Definition

A group G is left-orderable if there is a subset $\mathcal{P} \subset G$ satisfying:

$$G = \mathcal{P} \coprod \{1\} \coprod \mathcal{P}^{-1};$$

 $\mathcal{P} \cdot \mathcal{P} \subset \mathcal{P};$ and $\mathcal{P} \neq \emptyset$

The set \mathcal{P} is called a positive cone.

Example: $Homeo^+(\mathbb{R})$ is left-orderable

Let $Homeo^+(\mathbb{R})$ be the group of order/orientation preserving homeomorphisms of \mathbb{R} .

Choose a countable dense subset $X = \{x_1, x_2, x_3, \ldots\} \subset \mathbb{R}$. Set

$$f \in \mathcal{P}_X \Longleftrightarrow f(x_n) > x_n$$
 and $f(x_i) = x_i$ for $i < n$

Then \mathcal{P}_X is a positive cone.

Example: $Homeo^+(\mathbb{R})$ is left-orderable

Let $Homeo^+(\mathbb{R})$ be the group of order/orientation preserving homeomorphisms of \mathbb{R} .

Choose a countable dense subset $X = \{x_1, x_2, x_3, \ldots\} \subset \mathbb{R}$. Set

$$f \in \mathcal{P}_X \Longleftrightarrow f(x_n) > x_n \text{ and } f(x_i) = x_i \text{ for } i < n$$

Then \mathcal{P}_X is a positive cone.

Theorem [Hölder]

Let G be a countable group. Then G is left-orderable if and only if $G \hookrightarrow Homeo^+(\mathbb{R})$.

Three-manifold groups

Theorem [Howie-Short, Boyer-Rolfsen-Wiest]

If Y is a compact, orientable, irreducible three-manifold then $\pi_1(Y)$ is left-orderable if and only if $\pi_1(Y)$ surjects to a left-orderable group.

Theorem [Boyer-Rolfsen-Wiest]

If Y is a closed Seifert fibred space, the following are equivalent:

- (1) Y admits a co-orientable taut foliation;
- (2) Y admits an ℝ-covered foliation;
- (3) $\pi_1(Y)$ is left-orderable

Final steps

As a consequence of the gluing theorem:

Theorem [Hanselman-W.]

Let M be a loop type manifold, and let M' be a loop-type manifold for which all non-longitudinal fillings are L-space. For any slope γ the following are equivalent:

- (1) $\gamma \in \mathcal{L}_{M}^{\circ}$
- (2) $M \cup_h M'$ is an L-space, where $h(\gamma) = \lambda'$
- (3) $M \cup_h N$ is an L-space, where N is the twisted I-bundle over the Klein bottle and $h(\gamma) = \lambda$

Remark: The N_t appearing in Boyer-Clay all satisfy the condition that non-longitudinal fillings are L-space.

Reprise

Theorem

Suppose Y is a closed, orientable three-manifold admitting a decomposition $Y \cong M_1 \cup M_2$ where the M_i are Seifert fibred spaces with torus boundary. Then the following are equivalent:

- (1) Y is an L-space
- (2) $\pi_1(Y)$ cannot be left-ordered
- (3) Y does not admit a co-orientable taut foliation