Bordered Floer homology via immersed curves

 Joint work with Jonathan Hanselman and Jake RasmussenLiam Watson
Université de Sherbrooke

MCA Montréal
July 26, 2017

Heegaard Floer homology

Let M be a compact, connected, oriented three-manifold with torus boundary; fix a marked point $\star \in \partial M$.
Theorem (Hanselman-Rasmussen-W.)
The Heegaard Floer homology $\widehat{H F}(M)$ can be interpreted as a set of immersed curves
$T=\partial M \backslash \star$, up to regular homotopy.

Heegaard Floer homology

Let M be a compact, connected, oriented three-manifold with torus boundary; fix a marked point $\star \in \partial M$.

Theorem (Hanselman-Rasmussen-W.) The Heegaard Floer homology $\widehat{H F}(M)$ can be interpreted as a set of immersed curves (possibly decorated with local systems) in $T=\partial M \backslash \star$, up to regular homotopy.
A local system is a finite dimensional vector space V (in our case, over $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$), together with an endomorphism $\Phi: V \rightarrow V$.

Some examples (in the cover $\mathbb{R}^{2} \backslash \mathbb{Z}^{2} \rightarrow T$)

$$
\begin{aligned}
& \because Q^{2010} \\
& \because \% 8888 \\
& \because(0)
\end{aligned}
$$

The pairing theorem

Suppose further that $Y=M_{0} \cup_{h} M_{1}$ where $h: \partial M_{1} \rightarrow \partial M_{0}$ is an orientation reversing homeomorphism for which $h\left(\star_{1}\right)=h\left(\star_{0}\right)$.

Theorem (Hanselman-Rasmussen-W.)

$$
\widehat{H F}(Y) \cong H F\left(\gamma_{0}, \gamma_{1}\right)
$$

Here, $\operatorname{HF}\left(\gamma_{0}, \gamma_{1}\right)$ computes the Lagrangian intersection Floer homology of

$$
\gamma_{0}=\widehat{H F}\left(M_{0}\right) \quad \text { and } \quad \gamma_{1}=h^{!}\left(\widehat{H F}\left(M_{1}\right)\right)
$$

in the punctured torus $T=\partial M_{0} \backslash \star_{0}$. The function h ! composes h with the hyperelliptic involution on T.

Example: splicing right-handed trefoils

Most of the time, this boils down to counting minimal intersection.

Example: splicing right-handed trefoils

Most of the time, this boils down to counting minimal intersection.

See Hedden-Levine to compare this with a direct bordered Floer calculation of this particular splice.

Application: The L-space gluing theorem

Definition
A rational homology sphere Y is an L-space whenever

$$
\operatorname{dim} \widehat{H F}(Y)=\left|H_{1}(Y ; \mathbb{Z})\right|
$$

Question
When is $M_{0} \cup_{h} M_{1}$ an L-space?
When one (or both) of the M_{i} is a solid torus, the answer is
"sometimes". Define

$$
\mathcal{L}_{M}=\{\alpha \mid \text { the Dehn filling } M(\alpha) \text { is an L-space }\} \subset \mathcal{S}_{M}
$$

Application: The L-space gluing theorem

$$
\mathcal{L}_{M}=\{\alpha \mid \text { the Dehn filling } M(\alpha) \text { is an L-space }\} \subset \mathcal{S}_{M}
$$

Theorem (Hansleman-Rasmussen-W.)
Suppose M_{i} is irreducible and boundary irreducible (in particular, $M_{i} \not \not D^{2} \times S^{1}$). Then $M_{0} \cup_{h} M_{1}$ is an L-space if and only if

$$
\mathcal{L}_{M_{0}}^{\circ} \cup h\left(\mathcal{L}_{M_{1}}^{\circ}\right)=\mathcal{S}_{M_{0}}
$$

Special cases of this were known: Hedden-Levine, Hanselman, Hanselman-W., Hanselman-Rasmussen-Rasmussen-W.

Consequences of the L-space gluing theorem

Corollary

Set $N=\left|H_{1}(Y ; \mathbb{Z})\right|$ for $Y=M_{0} \cup_{h} M_{1}$ with $M_{i} \neq D^{2} \times S^{1}$. If $N=1,2,3,6$ then Y is not and L-space.

In particular, there do not exist toroidal integer homology sphere L-spaces (see also Eftekhary).

Conjecture (Ozsváth-Szabó)

The only prime integer homology sphere L-spaces are the three-sphere and the Poincaré homology sphere.

Consequences of the L-space gluing theorem

A knot in the three-sphere admitting non-trivial L-space surgeries is called an L-space knot. That is, such K are characterized by the property $\left|\mathcal{L}_{S^{3} \backslash \nu(K)}\right|>1$.

Corollary
Suppose K is a satellite L-space knot. Then both the pattern knot and the companion knot must be L-space knots.

This was conjectured by Hom-Lidman-Vafaee. More can be said about the companion knot; see Baker-Motegi.

Application: Degree one maps

Question

Given a degree one map $Y \rightarrow Y_{0}$, what is the relationship between $\widehat{H F}(Y)$ and $\widehat{H F}\left(Y_{0}\right)$?

Given an integer homology sphere $M_{0} \cup_{h} M_{1}$, consider the slope

$$
\alpha_{h}=h\left(\lambda_{1}\right) \in \mathcal{S}_{M_{0}}
$$

Note that this is a meridian for M_{0}, that is, $\Delta\left(\lambda_{0}, \alpha_{h}\right)=1$.
Theorem (Hanselman-Rasmussen-W.)
Let $Y=M_{0} \cup_{h} M_{1}$ and $Y_{0}=M_{0}\left(\alpha_{h}\right)$. Then there is a degree one map $Y \rightarrow Y_{0}$ and

$$
\operatorname{dim} \widehat{H F}(Y) \geq \operatorname{dim} \widehat{H F}\left(Y_{0}\right)
$$

A sketch of the proof

Step 0: make any local systems appearing trivial

A sketch of the proof

Step 0: make any local systems appearing trivial
Step 1: remove any closed components

A sketch of the proof

Step 0: make any local systems appearing trivial Step 1: remove any closed components
Step 2: pull the remaining curve tight

A sketch of the proof

Step 0: make any local systems appearing trivial Step 1: remove any closed components
Step 2: pull the remaining curve tight
Step 3: check that none of these steps created new intersection points

Where does $\widehat{H F}(M)$ come from?

The curve-set $\widehat{H F}(M)$ is a geometric interpretation of the bordered Floer homology $\widehat{\mathrm{CFD}}(M, \alpha, \beta)$, which was defined by Lipshitz-Ozsváth-Thurston.
The invariant $\widehat{\mathrm{CFD}}(M, \alpha, \beta)$ is a type D structure, which is a linear-algebraic object defined over an algebra \mathcal{A} associated with $T=\partial M \backslash \star$.

The interpretation $\widehat{H F}(M)$ comes from describing type D structures as geometric objects in T, and then providing a structure theorem that simplifies them.

Type D structures associated with a point

Consider a 0-handle with a marked point \star near the boundary.
Consider points (stations) on the boundary collected into groups (towns).
A type D structure is a train track that
(1) only travels to a *next* town;
(2) doesn't pass the basepoint; and
(3) has an even number of possible connections.

Type D structures associated with a point

Desired property: Extendability
An extension of a type D structure is a rail system upgrade.
The additional tracks can pass \star at most once.

Type D structures associated with a point

Lemma

Any extension of a type D structure is equivalent to one in standard form: a collection of properly embedded arcs, together with crossover arrows running clockwise along the boundary.

Convention:

Type D structures associated with a point

Crossover arrows moving between groups can be removed.

Structure Theorem

Every extendable type D structure associated with a zero handle can be put in the (simplified) standard form illustrated on the left.

Adding 1-handles

Three-manifold invariants

Structure Theorem
Extendable Type D structures in a surface with a fixed 0-and
1-handle decomposition are immersed curves with local systems.
Extension Theorem
The type D structure $\widehat{\operatorname{CFD}}(M, \alpha, \beta)$ is extendable.

