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Heegaard Floer homology

Let M be a compact, connected, oriented three-manifold with
torus boundary; fix a marked point x € OM.

Theorem (Hanselman-Rasmussen-W.)

The Heegaard Floer homology HF (M) can be interpreted as a set
of immersed curves in

T = OM \ %, up to regular homotopy.



Heegaard Floer homology

Let M be a compact, connected, oriented three-manifold with
torus boundary; fix a marked point x € oM.

Theorem (Hanselman-Rasmussen-W.)

The Heegaard Floer homology HF (M) can be interpreted as a set
of immersed curves (possibly decorated with local systems) in

T = OM \ %, up to regular homotopy.

A local system is a finite dimensional vector space V (in our case,
over F = 7, /27), together with an endomorphism ¢: V — V.



Some examples (in the cover R?\ Z2 — T)
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The pairing theorem

Suppose further that Y = My Uy, My where h: My — OMjp is an
orientation reversing homeomorphism for which h(x1) = h(xo).

Theorem (Hanselman-Rasmussen-W.)
HF(Y) & HF (0, 11)

Here, HF (7yg,71) computes the Lagrangian intersection Floer
homology of

Yo = I:IT-_(I\/IO) and v, = h!(lfﬁ:(/\/ll))

in the punctured torus T = dMp \ xo. The function h' composes h
with the hyperelliptic involution on T.



Example: splicing right-handed trefoils

Most of the time, this boils down to counting minimal intersection.



Example: splicing right-handed trefoils

Most of the time, this boils down to counting minimal intersection.

FIT:(MO Uhp Ml) =3/

See Hedden-Levine to compare this with a direct bordered Floer
calculation of this particular splice.



Application: The L-space gluing theorem

Definition
A rational homology sphere Y is an L-space whenever

dim HE(Y) = |Hy(Y; Z)]
Question
When is Mo Up My an L-space?

When one (or both) of the M; is a solid torus, the answer is
“sometimes”. Define

Ly = {a|the Dehn filling M(«) is an L-space} C Sy



Application: The L-space gluing theorem

Ly = {«a|the Dehn filling M(«) is an L-space} C Sy

Theorem (Hansleman-Rasmussen-W.)

Suppose M; is irreducible and boundary irreducible (in particular,
M; 2 D? x 51). Then My Uy, My is an L-space if and only if

Mo Y h(Lis,) = Smo

Special cases of this were known: Hedden-Levine, Hanselman,
Hanselman-W., Hanselman-Rasmussen-Rasmussen-W.



Consequences of the L-space gluing theorem

Corollary
Set N = |H1(Y;Z)‘ for Y = My Uy My with M; 75 D? x St If
N =1,2,3,6 then Y is not and L-space.

In particular, there do not exist toroidal integer homology sphere
L-spaces (see also Eftekhary).

Conjecture (Ozsvath-Szabd)

The only prime integer homology sphere L-spaces are the
three-sphere and the Poincaré homology sphere.



Consequences of the L-space gluing theorem

A knot in the three-sphere admitting non-trivial L-space surgeries
is called an L-space knot. That is, such K are characterized by the

property |Lgs\, (k)| > 1.

Corollary
Suppose K is a satellite L-space knot. Then both the pattern knot
and the companion knot must be L-space knots.

This was conjectured by Hom-Lidman-Vafaee. More can be said
about the companion knot; see Baker-Motegi.



Application: Degree one maps

Question

Given a degree one map Y — Yy, what is the relationship between
HF(Y) and HF(Yp)?

Given an integer homology sphere My Uy My, consider the slope
ap = h()\l) € SM()
Note that this is a meridian for My, that is, A(\g, ap) = 1.

Theorem (Hanselman-Rasmussen-W.)

Let Y = Mo Uy My and Yo = Mo(ap). Then there is a degree one
map Y — Yy and

dim HE(Y) > dim HF (Yp)



A sketch of the proof

Step 0: make any local systems
appearing trivial
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A sketch of the proof
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A sketch of the proof

Step 0: make any local systems
appearing trivial

Step 1: remove any closed
components

Step 2: pull the remaining curve
tight

Step 3: check that none of these
steps created new intersection points



Where does /:IT:(I\/I) come from?

The curve-set I:IT-'(M) is a geometric interpretation of the bordered
Floer homology CFD(M, a, 3), which was defined by
Lipshitz-Ozsvath-Thurston.

The invariant (j:\D(M,oz,B) is a type D structure, which is a
linear-algebraic object defined over an algebra A associated with
T =0M\ .

The interpretation IfIT—_(M) comes from describing type D
structures as geometric objects in T, and then providing a
structure theorem that simplifies them.



Type D structures associated with a point

Consider a 0-handle with a marked
point x near the boundary.

Consider points (stations) on the
boundary collected into groups
(towns).

A type D structure is a train track
that

(1) only travels to a *next* town;
(2) doesn’t pass the basepoint; and

(3) has an even number of possible
connections.



Type D structures associated with a point

Desired property: Extendability
An extension of a type D structure is
a rail system upgrade.

The additional tracks can pass x at
most once.




Type D structures associated with a point

Lemma

Any extension of a type D structure
is equivalent to one in standard
form: a collection of properly
embedded arcs, together with
crossover arrows running clockwise
along the boundary.

Convention:

=, 1




Type D structures associated with a point

Crossover arrows moving between
groups can be removed.

Structure Theorem

Every extendable type D structure
associated with a zero handle can be
put in the (simplified) standard form
illustrated on the left.
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Three-manifold invariants

Structure Theorem
Extendable Type D structures in a surface with a fixed 0- and
1-handle decomposition are immersed curves with local systems.

Extension Theorem -
The type D structure CFD(M, «, 3) is extendable.



