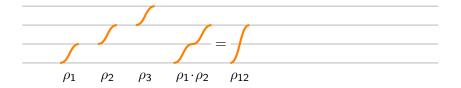
Dehn twists in Heegaard Floer homology or, what is a Heegaard Floer homology solid torus?

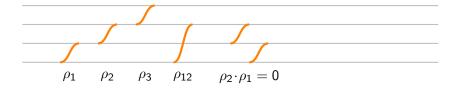
> Liam Watson University of Glasgow

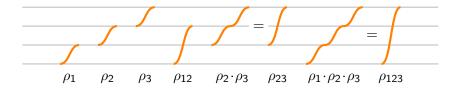
www.maths.gla.ac.uk/~lwatson

CMS Ottawa December 9, 2013

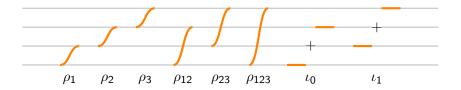
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



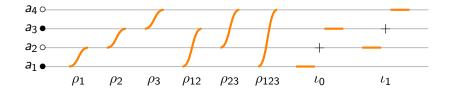


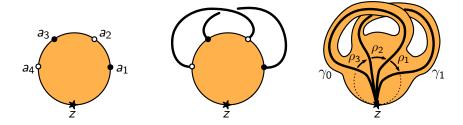


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

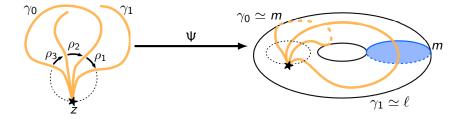


...associated with a torus.





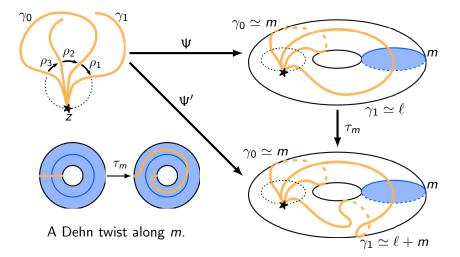
The boundary of a (relatively simple) 3-manifold



・ロト ・聞ト ・ヨト ・ヨト

- 2

The boundary of a (relatively simple) 3-manifold



Bordered structures

In general, a **bordered manifold** is a (closed, orientable) 3-manifold with parametrized boundary.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bordered structures

In general, a **bordered manifold** is a (closed, orientable) 3-manifold with parametrized boundary.

This talk will consider the case where the boundary is a torus.

In this setting, a **bordered manifold** is an ordered triple (M, γ_0, γ_1) where γ_0, γ_1 is a parametrization of the boundary torus ∂M , or, a choice of (ordered) basis elements generating

$$\langle \gamma_0, \gamma_1 \rangle \cong \mathbb{Z} \oplus \mathbb{Z} \cong \pi_1(\partial M).$$

For example

$$(M, \gamma_1, \gamma_0), (M, \gamma_0, \gamma_1), (M, \gamma_0, \gamma_0 + \gamma_1), \ldots$$

differ as bordered manifolds in general.

Bordered Heegaard Floer homology

Given a bordered manifold (M, γ_0, γ_1) , **bordered Heegaard Floer homology** assigns a left differential module

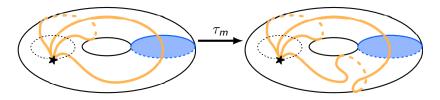
 $\widehat{\mathsf{CFD}}(M,\gamma_0,\gamma_1)$

over the torus algebra \mathcal{A} .

This is an invariant of (M, γ_0, γ_1) up to homotopy.

Bordered Heegaard Floer homology was introduced by Lipshitz, Ozsváth and Thurston to study gluing (along surfaces) in Heegaard Floer homology.

The Alexander trick



Alexander trick

The Dehn twist τ_m along the meridian m extends to a homeomorphism of the solid torus.

In other words, $(D^2 \times S^1, m, \ell)$ and $(D^2 \times S^1, m, \ell + m)$ are equivalent as bordered manifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Johansson's finiteness theorem

The Alexander trick characterizes the solid torus:

Theorem (Johansson)

If M is a (compact, connected, orientable, irreducible) bordered manifold for which

$$(M, \lambda, \mu) \sim (M, \lambda, \mu + \lambda)$$

as bordered manifolds, then M is a solid torus.

This follows from Johansson's Finiteness Theorem.

So how sensitive is this invariant to the parametrization?

Question Does $\widehat{CFD}(M, \lambda, \mu) \cong \widehat{CFD}(M, \lambda, \mu + \lambda)$ certify that M is a solid torus?

So how sensitive is this invariant to the parametrization?

Question

Does $\widehat{CFD}(M, \lambda, \mu) \cong \widehat{CFD}(M, \lambda, \mu + \lambda)$ certify that M is a solid torus?

Definition

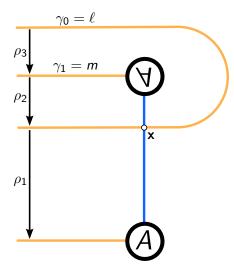
A Heegaard Floer homology solid torus is a bordered manifold (M, λ, μ) for which

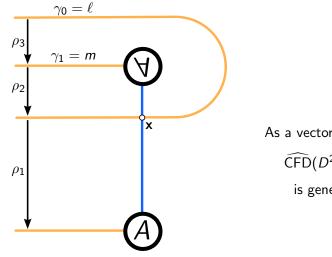
$$\widehat{\mathsf{CFD}}(M,\lambda,\mu)\cong\widehat{\mathsf{CFD}}(M,\lambda,\mu+\lambda)$$

Fine print: $H_1(M; \mathbb{Q}) = \mathbb{Q}$ and $[\lambda] \in H_1(M; \mathbb{Z})$ has finite order.

Theorem (W.)

There are infinite families of Heegaard Floer homology solid tori.

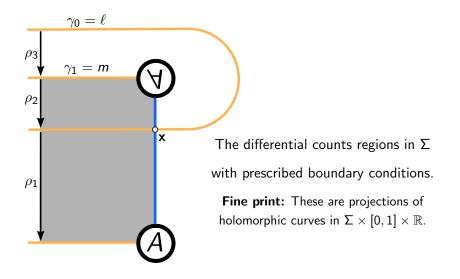




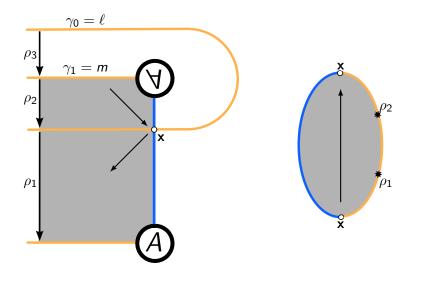
As a vector space (over \mathbb{F}), $\widehat{\mathsf{CFD}}(D^2 \times S^1, \ell, m))$

is generated by x.

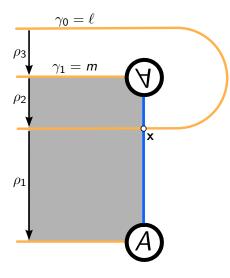
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

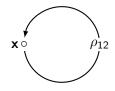


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで





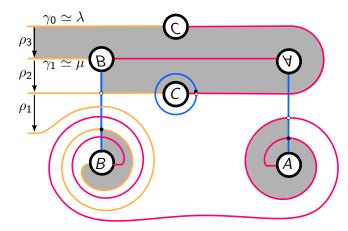
That is,

 $\widehat{\mathsf{CFD}}(D^2 \times S^1, \ell, m)$

is generated by ${\boldsymbol x}$ and has differential

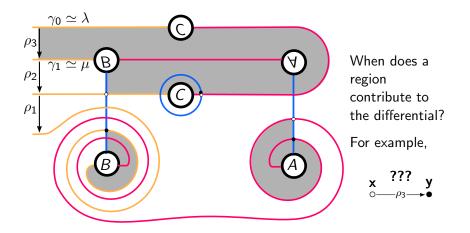
 $\partial(\mathbf{x}) = \rho_{12} \cdot \mathbf{x}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



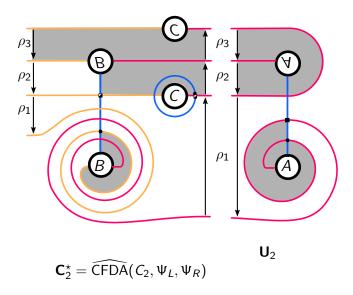
Goal: Compute $\mathbf{D}_2 = \widehat{\mathsf{CFD}}(M_2, \lambda, \mu)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

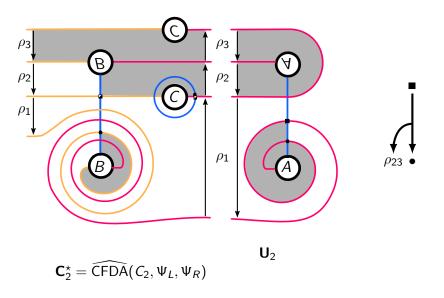


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

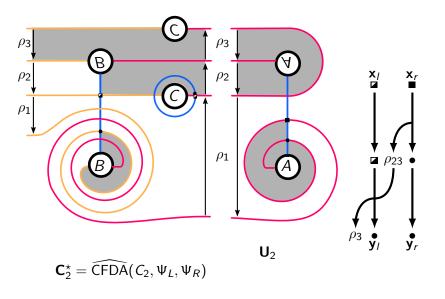
Goal: Compute $\mathbf{D}_2 = \widehat{\mathsf{CFD}}(M_2, \lambda, \mu)$



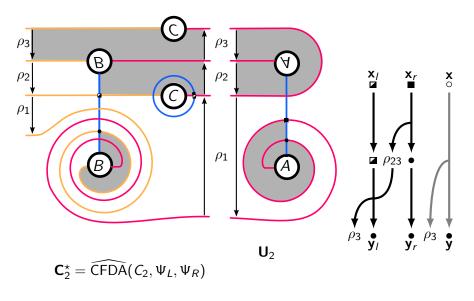
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The paring theorem of Lipshitz, Ozsváth and Thurston

A type D module: $U_2 = \widehat{\mathsf{CFD}}(S^2 \times S^1, \ell, m + 2\ell)$

A **type DA** bimodule: $\mathbf{C}_2^{\star} = \widehat{\mathsf{CFDA}}(C_2, \Psi_L, \Psi_R)$

Gives rise to a differential module generated (as a vector space) by

$$\mathbf{x} = \mathbf{x}_I \otimes_{\mathcal{I}} \mathbf{x}_r$$

with differential of the form

$$\partial(\mathbf{x}) = m_2(\mathbf{x}_I \otimes_{\mathcal{I}} \delta^1(\mathbf{x}_r)) = \rho_3 \cdot \mathbf{y}.$$

The paring theorem of Lipshitz, Ozsváth and Thurston

A type D module: $U_2 = \widehat{\mathsf{CFD}}(S^2 \times S^1, \ell, m + 2\ell)$

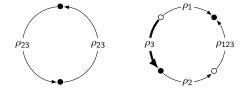
A type **DA** bimodule: $\mathbf{C}_2^{\star} = \widehat{\mathsf{CFDA}}(C_2, \Psi_L, \Psi_R)$

Gives rise to a differential module generated (as a vector space) by

$$\mathbf{x} = \mathbf{x}_I \otimes_{\mathcal{I}} \mathbf{x}_r$$

with differential of the form

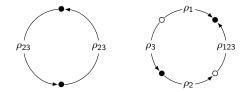
$$\partial(\mathbf{x}) = m_2(\mathbf{x}_I \otimes_{\mathcal{I}} \delta^1(\mathbf{x}_r)) = \rho_3 \cdot \mathbf{y}.$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

The paring theorem of Lipshitz, Ozsváth and Thurston

A type **D** module: $\mathbf{U}_2 = \widehat{\mathsf{CFD}}(S^2 \times S^1, \ell, m + 2\ell)$ A type **DA** bimodule: $\mathbf{C}_2^{\star} = \widehat{\mathsf{CFDA}}(C_2, \Psi_L, \Psi_R)$



So we get a new differential module $\bm{D}_2 = \bm{C}_2^\star \boxtimes \bm{U}_2$ from

$$\mathbf{x}^i = \mathbf{x}^i_I \otimes_{\mathcal{I}} \mathbf{x}^i_r \qquad \quad \partial(\mathbf{x}^i) = \sum_{n \geq 1} m_{n+1} (\mathbf{x}^i_I \otimes_{\mathcal{I}} \delta^n(\mathbf{x}^i_r))$$

Building Heegaard Floer homology solid tori

A type **D** module:
$$\mathbf{U}_n = \widehat{\mathsf{CFD}}(S^2 \times S^1, \ell, n+2\ell)$$

A type **DA** bimodule: $\mathbf{C}_n^* = \widehat{\mathsf{CFDA}}(C_n, \Psi_L, \Psi_R)$
A type **DA** bimodule: $\mathbf{C}_n = \widehat{\mathsf{CFDA}}(C_n, \Psi_R, \Psi_L)$
 $= \widehat{\mathsf{CFAD}}(C_n, \Psi_L, \Psi_R)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Building Heegaard Floer homology solid tori

A type **D** module:
$$\mathbf{U}_n = \widehat{\text{CFD}}(S^2 \times S^1, \ell, n+2\ell)$$

A type **DA** bimodule: $\mathbf{C}_n^* = \widehat{\text{CFDA}}(C_n, \Psi_L, \Psi_R)$
A type **DA** bimodule: $\mathbf{C}_n = \widehat{\text{CFDA}}(C_n, \Psi_R, \Psi_L)$
 $= \widehat{\text{CFAD}}(C_n, \Psi_L, \Psi_R)$

Let $\mathbf{D}_n \cong \widehat{\mathrm{CFD}}(M_n, \lambda, \mu)$ be the differential module $\mathbf{C}_n^* \boxtimes \mathbf{U}_n$.

Computation

$$\mathbf{C}_m \boxtimes \mathbf{D}_n \cong \underbrace{\mathbf{D}_n \oplus \cdots \oplus \mathbf{D}_n}_m$$

Key observation: C_1 alters μ by a Dehn twist along λ .

