Heegaard Floer homology solid tori

Liam Watson

www.math.ucla.edu/~lwatson

January 11, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Set $M = S^3 \smallsetminus \nu(K)$ with

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- $\langle \mu, \lambda \rangle \cong H_1(\partial M; \mathbb{Z})$
- $\bullet \ \mu \cdot \lambda = +1$

Set
$$M = S^3 \smallsetminus \nu(K)$$
 with

•
$$\langle \mu, \lambda \rangle \cong H_1(\partial M; \mathbb{Z})$$

•
$$\mu \cdot \lambda = +1$$

$$S^3_{p/q}(K) = M \cup_h (D^2 \times S^1)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

- Set $M = S^3 \smallsetminus \nu(K)$ with
- $\langle \mu, \lambda \rangle \cong H_1(\partial M; \mathbb{Z})$
- $\bullet \ \mu \cdot \lambda = +1$

$$S^3_{p/q}(K) = M \cup_h (D^2 \times S^1)$$

$$\begin{split} h: \partial D^2 \times S^1 &\to \partial M \\ \partial D^2 \times \{ \mathsf{p}t \} &\mapsto p\mu + q\lambda \end{split}$$

Alexander's trick

The homeomorphism h extends uniquely to the rest of the solid torus (i.e. the 3-ball).

The Alexander trick

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Dehn twist along $\partial D^2 \times \{pt\}$ in the boundary of $D^2 \times S^1$ extends to a homeomorphism of the solid torus.

The Alexander trick

A Dehn twist along $\partial D^2 \times \{pt\}$ in the boundary of $D^2 \times S^1$ extends to a homeomorphism of the solid torus.

This observation characterizes the solid torus, among orientable, irreducible 3-manifolds with torus boundary, in the following sense:

Theorem (Johannson, see Siebenmann or McCullough)

Let M be an orientable, irreducible 3-manifold with torus boundary. If M admits a homeomorphism h for which $h|_{\partial M}$ is a Dehn twist, then $M \cong D^2 \times S^1$.

More generally, one would like to study the closed manifold $M_1 \cup_h M_2$ for a given pair of (orientable) 3-manifolds M_1 , M_2 and homeomorphism $h : \partial M_1 \to \partial M_2$.

In this talk, we will consider the decomposition of a closed, orientable 3-manifold Y along an interesting (incompressible, two-sided) torus and study the pieces M_1 and M_2 of $Y = M_1 \cup_h M_2$.

Consider a self indexing Morse function

 $f: Y \rightarrow [0,3]$ The surface $f^{-1}(\frac{3}{2})$ gives rise to a Heegaard diagram \mathcal{H} for Y. Pictured is the inverse image of $[\frac{3}{2},3]$; there is a critical point of index 2 in the interior of each blue disk.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Now consider a properly embedded disk in the handlebody $f^{-1}([\frac{3}{2},3])$, meeting the red attaching curves transversely in 4 points.

イロト イポト イヨト イヨト

Now consider a properly embedded disk in the handlebody $f^{-1}([\frac{3}{2},3])$, meeting the red attaching curves transversely in 4 points.

・ロト ・四ト ・ヨト ・ヨ

Claim: The boundary of this disk in \mathcal{H} represents a torus in Y.

First, suppose that the critical point of index 3 is in the interior of the green disk.

Next, notice that the points of intersection are paired, according to index 1 critical points.

(日)、

(indices of critical points labeled)

Finally, the remaining points in the boundary of the disk flow to the index 0 critical point.

イロト イポト イヨト イヨト

(indices of critical points labeled)

Add a collection of handles A and B to a sphere to obtain a handlebody.

As before, $\beta\text{-curves}$ in blue and $\alpha\text{-curves}$ in red.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Add a collection of handles A and B to a sphere to obtain a handlebody.

As before, $\beta\text{-curves}$ in blue and $\alpha\text{-curves}$ in red.

Exercise

For this particular example: (1) the manifold has torus boundary (2) the fundamental group is $\langle a, b | a^2 b^2 \rangle$ (3) the manifold is the twisted I-bundle over the Klein bottle

 $\mathcal{O}\mathcal{A}\mathcal{O}$

э

For the purpose of this talk, a bordered manifold is an ordered triple $(M, \alpha_0^a, \alpha_1^a)$ where

• *M* is a manifold with $\partial M = S^1 \times S^1$,

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $\langle \alpha_0^a, \alpha_1^a \rangle$ generates the peripheral subgroup $\pi_1(\partial M) \subset \pi_1(M)$.

For the purpose of this talk, a bordered manifold is an ordered triple $(M, \alpha_0^a, \alpha_1^a)$ where

- M is a manifold with $\partial M = S^1 \times S^1$,
- $\langle \alpha_0^a, \alpha_1^a \rangle$ generates the peripheral subgroup $\pi_1(\partial M) \subset \pi_1(M)$.

Order matters: $(M, \alpha_0^a, \alpha_1^a)$ and $(M, \alpha_1^a, \alpha_0^a)$ are different bordered manifolds.

So a bordered Heegaard diagram for M is a triple $(\mathcal{H}, \alpha_0^a, \alpha_1^a)$ where \mathcal{H} is a Heegaard diagram of genus $g \geq 1$ with g - 1 α -curves.

Bordered Heegaard Floer homology

To a Heegaard diagram \mathcal{H} , Heegaard Floer homology associates a chain complex $\widehat{CF}(\mathcal{H})$ (over $\mathbb{F} = \mathbb{Z}/2$). $\widehat{HF}(\mathcal{H})$ is independent of the choice of \mathcal{H} ; write $\widehat{HF}(Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This is due to Ozsváth and Szabó.

Bordered Heegaard Floer homology

To a bordered Heegaard diagram $(\mathcal{H}, \alpha_0^a, \alpha_1^a)$, bordered Heegaard Floer homology associates a differential (graded) module

 $\widehat{\mathsf{CFD}}(\mathcal{H}, \alpha_0^{\mathsf{a}}, \alpha_1^{\mathsf{a}})$

over an algebra \mathcal{A} .

The homotopy type of this object is independent of the choice of \mathcal{H} (but not the peripheral elements!); write $\widehat{\mathsf{CFD}}(M, \alpha_0^a, \alpha_1^a)$

This is due to Lipshitz, Ozsváth and Thurston.

The torus algebra

The algebra \mathcal{A} is generated by two idempotents ι_0 and ι_1 and three Reeb elements ρ_1, ρ_2, ρ_3 .

(日)、

- 2

The torus algebra

The algebra \mathcal{A} is generated by two idempotents ι_0 and ι_1 and three Reeb elements ρ_1, ρ_2, ρ_3 .

Multiplication may be described:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The torus algebra

The algebra \mathcal{A} is generated by two idempotents ι_0 and ι_1 and three Reeb elements ρ_1, ρ_2, ρ_3 .

Multiplication may be described:

Write $\rho_2 \rho_3 = \rho_{23}$, etc. so that \mathcal{A} is 8 dimensional as a vector space over \mathbb{F} .

Differential modules over ${\mathcal A}$

In general, $\widehat{\text{CFD}}(M, \alpha_0^a, \alpha_1^a)$ is generated (as a vector space) by *g*-tuples of intersection points **x** between the collections α and β .

Exactly one of α_0^a or α_1^a will be occupied so that there is a splitting according to idempotents (depending on which of the α -arcs is occupied).

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Differential modules over ${\mathcal A}$

In general, $\widehat{\text{CFD}}(M, \alpha_0^a, \alpha_1^a)$ is generated (as a vector space) by *g*-tuples of intersection points **x** between the collections α and β .

Exactly one of α_0^a or α_1^a will be occupied so that there is a splitting according to idempotents (depending on which of the α -arcs is occupied).

Note: as a differential module over \mathcal{A} ,

 $\widehat{\mathsf{CFD}}(M,\alpha^{a}_{0},\alpha^{a}_{1})$

has a differential $\partial(\mathbf{x}) = \sum_{\mathcal{A}} \mathbf{a} \otimes \mathbf{y}$.

For this example we have

$$\widehat{\mathsf{CFD}}(M, \alpha_0^{\mathsf{a}} \simeq \lambda, \alpha_1^{\mathsf{a}} \simeq \varphi)$$

described by the directed graph.

Example: There is a generator **x** in the ι_0 -summand for which

 $\partial(\mathbf{x}) = \rho_1 \otimes \mathbf{u} + \rho_3 \otimes \mathbf{v}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where \mathbf{u}, \mathbf{v} are generators in the ι_1 -summand.

For this example we have

$$\widehat{\mathsf{CFD}}(M, \alpha_0^{\mathsf{a}} \simeq \lambda, \alpha_1^{\mathsf{a}} \simeq \varphi)$$

described by the directed graph.

Example: There is a generator **x** in the ι_0 -summand for which

 $\partial(\mathbf{x}) = \rho_1 \otimes \mathbf{u} + \rho_3 \otimes \mathbf{v}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where \mathbf{u}, \mathbf{v} are generators in the ι_1 -summand.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□> ◆□> ◆三> ◆三> ・三 のへの

◆□> ◆□> ◆三> ◆三> ・三 のへの

Simple objects in Heegaard Floer homology

In general, for a \mathbb{Q} -homology sphere Y, rk $\widehat{HF}(Y) \ge |H_1(Y; \mathbb{Z})|$. Equality is realized for lens spaces, and more generally we have:

Definition

A rational homology sphere Y is a Heegaard Floer homology lens space if $\operatorname{rk} \widehat{\operatorname{HF}}(Y) = |H_1(Y; \mathbb{Z})|$.

The term *Heegaard Floer homology lens space* has been shortened to *L-space* (for perhaps obvious reasons).

Twisting along the rational longitude

In general, bordered invariants are very sensitive to the choice of peripheral elements.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Twisting along the rational longitude

In general, bordered invariants are very sensitive to the choice of peripheral elements. However:

Proposition (Boyer-Gordon-W.) $\widehat{CFD}(M, \lambda, \varphi) \cong \widehat{CFD}(M, \lambda, \varphi + n\lambda)$ This plays a central role in:

Theorem (Boyer-Gordon-W.)

If Y is a \mathbb{Q} -homology sphere admitting Sol geometry then Y is an L-space.

What is a simple object in bordered Floer theory?

Observe that (M, λ, φ) and $(M, \lambda, \varphi + n\lambda)$ are different bordered manifolds for each $n \in \mathbb{Z}$ (since $M \neq D^2 \times S^1$); the proposition may be interpreted as a *Heegaard Floer homology Alexander trick*.

What is a simple object in bordered Floer theory?

Observe that (M, λ, φ) and $(M, \lambda, \varphi + n\lambda)$ are different bordered manifolds for each $n \in \mathbb{Z}$ (since $M \neq D^2 \times S^1$); the proposition may be interpreted as a *Heegaard Floer homology Alexander trick*.

Definition

Let *M* be a Q-homology solid torus with rational longitude λ . *M* is a Heegaard Floer homology solid torus if

$$\widehat{\mathsf{CFD}}(M,\lambda,\mu)\cong\widehat{\mathsf{CFD}}(M,\lambda,\mu+n\lambda)$$

for all $n \in \mathbb{Z}$, where $\langle \mu, \lambda \rangle \cong \pi_1(\partial M)$.

Examples of Heegaard Floer homology solid tori

The solid torus is a Heegaard Floer homology solid torus; the twisted I-bundle over the Klein bottle is a (non-trivial) Heegaard Floer homology solid torus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples of Heegaard Floer homology solid tori

The solid torus is a Heegaard Floer homology solid torus; the twisted I-bundle over the Klein bottle is a (non-trivial) Heegaard Floer homology solid torus.

Theorem (W.)

For each integer n > 0 there is a Heegaard Floer homology solid torus M_n which is a Seifert fibred space with

- $\pi_1(M_n) \cong \langle a, b | a^n b^n \rangle$,
- $H_1(M_n;\mathbb{Z})\cong\mathbb{Z}\oplus\mathbb{Z}/n$,

and the Dehn filling along the rational longitude is $S^2 \times S^1$.

 M_1 is the solid torus; M_2 is the twisted *I*-bundle over the Klein bottle.

The case n = 4: $\widehat{CFD}(M_4, \lambda, \varphi)$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

A construction

Given $Y = M \cup_h M'$ we have that $\widehat{CF}(Y) \cong \widehat{CFA}(M, \alpha_0, \alpha_1) \boxtimes \widehat{CFD}(M', \alpha'_0, \alpha'_1)$

where the bordered manifolds are chosen so that $h(\alpha'_i) = \alpha_i$.

A construction

Given $Y = M \cup_h M'$ we have that

$$\widehat{\mathsf{CF}}(Y) \cong \widehat{\mathsf{CFA}}(M, \alpha_0, \alpha_1) \boxtimes \widehat{\mathsf{CFD}}(M', \alpha_0', \alpha_1')$$

where the bordered manifolds are chosen so that $h(\alpha'_i) = \alpha_i$.

Notice that if M' is a Heegaard Floer homology solid torus, we immediately get an infinite family of distinct 3-manifolds $\{Y_n\}$ with identical $\widehat{HF}(Y_n)$: the homology in this setting only depends on the image of $\alpha'_0 = \lambda$ (as in Dehn surgery).

A construction

Given $Y = M \cup_h M'$ we have that

$$\widehat{\mathsf{CF}}(Y) \cong \widehat{\mathsf{CFA}}(M, \alpha_0, \alpha_1) \boxtimes \widehat{\mathsf{CFD}}(M', \alpha_0', \alpha_1')$$

where the bordered manifolds are chosen so that $h(\alpha'_i) = \alpha_i$.

Notice that if M' is a Heegaard Floer homology solid torus, we immediately get an infinite family of distinct 3-manifolds $\{Y_n\}$ with identical $\widehat{HF}(Y_n)$: the homology in this setting only depends on the image of $\alpha'_0 = \lambda$ (as in Dehn surgery).

This is meant to justify the notion of a Heegaard Floer homology Alexander trick.

A final example: Dehn surgery revisited

Let *M* be the left-hand trefoil exterior with framing $\alpha = \lambda - 5\mu$, and let M_2 be the twisted *I*-bundle over the Klein bottle.

A final example: Dehn surgery revisited

Let *M* be the left-hand trefoil exterior with framing $\alpha = \lambda - 5\mu$, and let M_2 be the twisted *I*-bundle over the Klein bottle.

A non-L-space (rk $\widehat{HF} = 6$):

 $(M, \mu, \alpha) \cup (M_2, \lambda, \varphi)$, that is, $\lambda \mapsto \mu$. An L-space (rk $\widehat{HF}=20)$:

 $(M, \alpha, \mu) \cup (M_2, \lambda, \varphi)$, that is, $\lambda \mapsto \alpha$.

A final example: Dehn surgery revisited

Let *M* be the left-hand trefoil exterior with framing $\alpha = \lambda - 5\mu$, and let M_2 be the twisted *I*-bundle over the Klein bottle.

A non-L-space (rk $\widehat{HF} = 6$):

An L-space (
$$rk \widehat{HF} = 20$$
):

 $\begin{array}{ll} (M,\mu,\alpha)\cup(M_2,\lambda,\varphi), \text{ that} & (M,\alpha,\mu)\cup(M_2,\lambda,\varphi), \text{ that} \\ \text{is,} & \lambda\mapsto\mu. & \text{is,} & \lambda\mapsto\alpha. \end{array}$

Both examples give rise to infinite families, and both decompose into (nearly) the same bordered pieces.