
ANY TANGLE EXTENDS TO NON-MUTANT KNOTS WITH THE
SAME JONES POLYNOMIAL

LIAM WATSON

ABSTRACT. We show that an arbitrary tangle T can be extended to produce diagrams of
two distinct knots that cannot be distinguished by the Jones polynomial. When T is a prime
tangle, the resulting knots are prime. It is also shown that, in either case, the resulting pair
are not mutants.

1. INTRODUCTION

The following question is still unanswered: Is there a nontrivial knot with Jones poly-
nomial 1? This question has motivated a range of tools for generating pairs of distinct
knots sharing a common Jones polynomial [1, 7, 14, 15]. The prototype for these is the
construction of mutation due to Conway [4], and it is well known that this technique pre-
serves the HOMFLY polynomial [7]. However, it can be shown that the mutant of any
diagram of the unknot is always unknotted [14, 15]. We take this as motivation for the
following:

Theorem. For any prime tangle T , there exits a pair of distinct prime knots (each containing T
in their diagram) that cannot be distinguished by the Jones polynomial. Moreover, these knots are
not related by mutation.

For links having 2 or 3 components, Thistlethwaite [17] has found examples of non-
trivial links having trivial Jones polynomial. It is shown in [5] that there are n-component
non-trivial links having trivial Jones polynomial for all n > 1. We present some new
examples of non-trivial knots that cannot be distinguished by the Jones polynomial. The
methods used here combine ideas from Eliahou, Kauffman and Thistlethwaite [5] and
Kanenobu [10].

2. POLYNOMIALS

To establish notation, we review the construction of the Jones polynomial and its 2-
variable generalization, the HOMFLY polynomial. Let Λ = Z[a, a−1] and K be a knot,
that is a smooth or piecewise linear embedding S1 →֒ S3. We will confuse the knot and a
diagram representing it, denoting both by K. More generally, an n-component link L is a
collection of n disjointly embedded circles ∐n

i=1S
1
i →֒ S3 [16].
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We recall that the Kauffman bracket 〈L〉 ∈ Λ of a link L is obtained recursively from the
axioms [11]

〈 〉

= 1(1)
〈 〉

= a
〈 〉

+ a−1
〈 〉

(2)
〈

L∐
〉

= δ
〈

L
〉

(3)

where δ = −a−2 − a2. The vignettes 〈 〉 indicate that the changes are made to the diagram
locally, while the rest of diagram is left unchanged. The Jones [8, 9] polynomial VL(a) ∈ Λ
may be defined by

VL(a) = (−a−3)w(~L)〈L〉

where the writhe w(~L) ∈ Z is obtained by assigning an orientation to L, and taking a sum
over all crossings of L by a right hand rule:

w
( )

= 1 w
( )

= −1.

For the HOMFLY [6] polynomial PL(t, x), a similar recursive definition exists:

P (t, x) = 1(4)

t−1PL+
(t, x) − tPL

−

(t, x) = xPL0
(t, x)(5)

In this setting, L+, L− and L0 are diagrams that are identical except in a small region
where they differ as in

L+ L− L0 .

With this notation, the Jones polynomial may be recovered from the HOMFLY polynomial
by specifying

VL(a) = PL

(

a−4, a−2 − a2
)

where t = a−4 recovers the standard form of the Jones polynomial.

3. TANGLES

For the purpose of this paper, a tangle T will be given by the intersection B3 ∩L where
B3 ⊂ S3 is a 3-ball, and ∂B3 intersects the link L transversely in exactly 4 points [4].
Following notation of Lickorish [12], we may denote T by the pair (B3

T , t), where t are the
arcs given by B3

T ∩L. Note that by taking S3 = B3
T ∪B3

U we can denote L = T ∪U provided
∂t = ∂u.

FIGURE 1. Some diagrams of tangles.

Again, we will confuse a tangle T and a diagram representing it, noting that a diagram
of a tangle is obtained by intersecting a disk with a diagram for L. Equivalence of tangles,
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as subsets of link diagrams, is given by isotopy fixing the four boundary points, together
with the Reidemeister moves [13, 16].

Let M be the free Λ-module generated by equivalence classes of tangles, and let I be
the ideal generated by the elements

〈 〉

− a
〈 〉

− a−1
〈 〉

〈

T ∐
〉

− δ
〈

T
〉

The Kauffman bracket skein module S = M/I is generated by the tangles
{

,
}

denoted 0 and ∞ respectively [14, 15]. For T ∈ S we have

T = x0 + x∞ =
[

x0 x∞

]

[

0
∞

]

where x0, x∞ ∈ Λ. br(T ) =
[

x0 x∞

]

is called the bracket vector of T [5]. For example,

br
( )

=
[

a a−1
]

.

Now consider disjoint 3-balls B3
T , B3

U ⊂ S3 defining tangles T, U in some knot K. Write
K = K(T, U) so that

〈K(T, U)〉 = br(T )K br(U)t

defines a bilinear map 〈K(−,−)〉 : S × S → Λ where

K =

[

〈K(0, 0)〉 〈K(0,∞)〉
〈K(∞, 0)〉 〈K(∞,∞)〉

]

.

This will be referred to as the evaluation matrix for K(T, U).

Two tangles T, U are homeomorphic [12] if there is a homeomorphism of pairs (B3
T , t) →

(B3
U , u). Note that this homeomorphism need not be the identity on the boundary; the

tangles 0 and ∞ are homeomorphic, for example. In general, a tangle is rational if it is
homeomorphic to 0.

A tangle T is prime [12] whenever it is non-rational, t is a pair of disjoint arcs, and any
S2 ⊂ B3

T meeting t transversely in 2 points bounds a ball in B3
T containing an unknotted

arc. In figure 1 for example, the first and second tangles from the left are prime (see [12]).

4. BRAID ACTIONS

Let B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉 be the three strand braid group [2, 3] with standard
generators

σ1 = σ2 = .

Given T ∈ S and β ∈ B3 we can define a new tangle denoted T β as in figure 2, and it is
easy to check that this is a well defined group action S ×B3 → S. Note that T and T β are
homeomorphic tangles. In particular, if T is prime, then so is T β. Let

Σ1 =

[

−a−3 0
a−1 a

]

Σ2 =

[

a a−1

0 −a−3

]

and define a group homomorphism Φ : B3 −→ GL2(Λ) via Φ(σj) = Σj . A direct compu-
tation gives the following (see also [5]):

3



T �
FIGURE 2. The tangle T β.

Proposition 4.1. For T ∈ S, br(T σj) = br(T )Σj.

Remark 4.2. It is possible to extend this action to 4-braids, and Φ to a homomorphism Φ : B4 →
GL2(Λ). However, Φ(σ1) = Φ(σ3) since the tangles T σ1 and T σ3 are related by mutation and a
flype.

Now for β ∈ B3, consider the linear transformation defined by

β : S × S −→ S × S

(T, U) 7−→ (T β, Uβ−1

).

For a knot K = K(T, U), this leads to the definition of a new knot Kβ = K(T β, Uβ−1

).
Note that

〈Kβ〉 = br(T )Φ(β)K (Φ(β−1))tbr(U)t.

Whenever K ∈ GL2(Λ) (as is the case in the examples considered in the following sec-
tions), we define a second B3-action

B3 × GL2(Λ) −→ GL2(Λ)

(β,K) 7−→ Φ(β)K (Φ(β−1))t.

Under this action, when β ∈ B3 gives rise to a fixed point, the linear transformation given
by β fits into the commutative diagram

S × S

β

��

〈K(−,−)〉

++WWWWWWWWWWWWW

Λ .

S × S
〈K(−,−)〉

33ggggggggggggg

In particular, whenever K ∈ Fix(β) it follows that 〈K〉 = 〈Kβ〉 and we would like to study
the case where K and Kβ are distinct knots.

5. KANENOBU KNOTS

Shortly after the discovery of the HOMFLY polynomial, Kanenobu introduced families
of distinct knots having the same HOMFLY polynomial and hence the same Jones poly-
nomial [10]. We extend these examples to define a larger class of Kanenobu knots as in
figure 3. These will be denoted by K(T, U) for tangles T, U . Another direct computation
gives the following:

Proposition 5.1. Suppose x ∈ Λ so that

X =

[

x δ
δ δ2

]

∈ GL2(Λ).
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T U
FIGURE 3. The Kanenobu knot K(T, U) for tangles T, U .

Then Φ(σ2)X Φ(σ−1
2 )t = X and X ∈ Fix(σ2) under the B3-action on GL2(Λ).

Since K(0, 0) is the knot 41#41, we can compute the evaluation matrix

K =

[

(a−8 − a−4 + 1 − a4 + a8)2 δ
δ δ2

]

for the Kanenobu knot K(T, U). This K is of the form given in proposition 5.1, so it follows
that

Lemma 5.2. Whenever tangles T, U are chosen such that w(K) = w(Kσ2), the family of knots

given by K(T σn
2 , Uσ−n

2 ) are indistinguishable by the Jones polynomial for n ∈ Z.

Remark 5.3. While we are only making use of an action of B2 in this setting, an example of an
application of B3 can be found in [5] where the operator ω is the braid σ2

2σ
−1
1 σ2

2 .

6. BASIC EXAMPLES

Consider the Kanenobu knots

K0 = K
(

,
)

K1 = K
(

,
)

K2 = K
(

,
)

and notice that by applying the action of σ2 we have

K0
σ2

// K1
σ2

// K2

so that by construction, these knots have the same Jones polynomial

a−16 − 2a−12 + 3a−8 − 4a−4 + 5 − 4a4 + 3a8 − 2a12 + a16.

On the other hand

PK0
(t, x) = (t−4 − 2t−2 + 3 − 2t2 + t4) + (−2t−2 + 2 − 2t2)x2 + x4

PK1
(t, x) = (2t−2 − 3 + 2t2) + (3t−2 − 8 + 3t2)x2 + (t−2 − 5 + t2)x4 − x6

PK2
(t, x) = (t−4 − 2t−2 + 3 − 2t2 + t4) + (−2t−2 + 2 − 2t2)x2 + x4

and we can conclude that K0 and K1 (or K1 and K2) are distinct knots. Moreover, these
knots cannot be mutants as they have different HOMFLY polynomials. Notice that the
equality PK0

= PK2
is consistent with Kanenobu’s results [10].
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FIGURE 4. Distinct, non-mutant knots with identical Jones polynomial.

7. PROOF OF THE THEOREM

For any tangle T , choose U such that w(U) = −w(T ) by switching each crossing of T

and define Kanenobu knots K = K(T, U) and Kσ2 = K(T σ2 , Uσ−1

2 ) (see figure 6). From
lemma 5.2 we have that VK = VKσ2 . To see that these are distinct knots, we compute
the HOMFLY polynomials PK and PKσ2 . The requirement on the tangle U gives two
choices of orientations for the tangles that are compatible with an orientation of the knot
(or possibly link, in which case a choice of orientation is made) K(T, U). They are

Type 1
( T , U )

Type 2
( T , U )

so we proceed in two cases. For knots of type 1 we use the skein relation (5) to decomposeT = aT + bTU = aU + bU

where aT , bT , aU , bU ∈ Z[t±1, x±1]. Combining pairwise we obtain
( T , U )

= aT aU

(

,
)

+ aT bU

(

,
)

+ bT aU

(

,
)

+ bT bU

(

,
)

so that PK = aT aUPK1
+R where R = (aT bU + bT aU)

(

t−1−t
x

)

+ bT bU

(

t−1−t
x

)2

. Now apply-
ing the action of σ2 we have

(

T σ2 , Uσ−1

2

)

= aT aU

(

,
)

+ aT bU

(

,
)

+ bT aU

(

,
)

+ bT bU

(

,
)

= aT aU

(

,
)

+ aT bU

(

,
)

+ bT aU

(

,
)

+ bT bU

(

,
)

so that PKσ2 = aT aUPK2
+ R. Since PK1

6= PK2
(see previous section), we have that

PK 6= PKσ2 giving rise to distinct knots. A similar procedure applies for type 2 tangles
and is left to the reader. As the knots constructed have different HOMFLY polynomials,
we conclude that they cannot be mutants despite having identical Jones polynomial.

K(T, U) can be viewed as a T ∪ V , where V is the tangle given in figure 5. It follows
from [12] that K(T, U) is prime whenever both T and V are prime tangles. Whenever T
is prime, U is prime also, therefore it remains to show that V is prime.
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U
FIGURE 5. The tangle V = (S3 r B3

T , v).

Choosing U = 0 we see that each arc of V is unknotted, hence there is no knotted arc-
ball pair. In this case closing V to obtain 41#41 yields bridge index 3. Since the union of
two rational tangles is a 2-bridge knot [12], we conclude that V must be a prime tangle.
Applying lemma 2 of [12], V is a prime tangle for any choice of prime tangle U .T U T U

FIGURE 6. Distinct, non-mutant knots with identical Jones polynomial for
arbitrary tangle T .

8. FURTHER EXAMPLES

Taking β to be the braid σ2
1σ

−1
2 σ1σ

−2
5 σ4σ

−1
5 ∈ B6, the Kanenobu knots have the alternate

diagram given in figure 7. For general β ∈ B6, we can define a closure Lβ(T, U) in this�T U
FIGURE 7. The link Lβ(T, U).

way to obtain a link for tangles T, U . Define the subgroup G < B6 via the composite
homomorphism

B3
// B3 ⊕ B3

// B6

α // (α, α) // i0(α)i3(sα)

where ik : B3 → B6 via ik(σj) = σj+k, and s : B3 −→ B3 by sσ1 = σ−1
2 and sσ2 = σ−1

1 . From
this construction it follows that the evaluation matrix for any link of the form Lβ(T, U) is
of the form given in proposition 5.1 whenever β ∈ G. We may revisit the argument in the
previous section with a link of the form Lβ(T, U), and obtain a range of new examples of
links that cannot be distinguished by the Jones polynomial.
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For example, let β = σ3
1σ

−1
2 σ1σ

−3
5 σ4σ

−1
5 ∈ G then K = Lβ(0, 0) is the knot 52#5⋆

2. Our
construction shows that Kσ2 and K have the same Jones polynomial

−a−20 + 2a−16 − 4a−12 + 6a−8 − 7a−4 + 9 − 7a4 + 6a8 − 4a12 + 2a16 − a20,

however these knots (illustrated in figure 8) are once again distinguished by the HOMFLY
polynomial:

PK = (−4t−2 + 9 − 4t2) + (−8t−2 + 20 − 8t2)x2

+ (−5t−2 + 18 − 5t2)x4 + (−t−2 + 7 − t2)x6 + x8

PKσ2 = (−t−4 + 3 − t4) + (−t−4 + t−2 + 4 − t2 + t4 − t6)x2 + (t−2 + 2 + t2)x4

FIGURE 8. The knots K = Lβ(0, 0) and Kσ2 = Lβ(0 σ2, 0 σ−1

2 ).
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[2] Emil Artin. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg, 4:47–72, 1925.
[3] Joan S. Birman. Braids, Links and Mapping Class Groups. Number 82 in Annals of Mathematics Studies.

Princeton University Press, Princeton, 1974.
[4] J. H. Conway. An enumeration of knots and links. In J. Leech, editor, Computational problems in abstract

algebra, pages 329–358. Pergamon Press, 1970.
[5] Shalom Eliahou, Louis H. Kauffman, and Morwen B. Thistlethwaite. Infinite families of links with

trivial Jones polynomial. Topology, 42(1):155–169, 2003.
[6] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millet, and A. Ocneanu. A new polynomial invariant of

knots and links. Bull. AMS, 12:183–312, 1985.
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