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Knots with identical Khovanov homology

LIAM WATSON

We give a recipe for constructing families of distinct knots that have identical
Khovanov homology and give examples of pairs of prime knots, as well as infinite
families, with this property.

57M25, 57M27

1 Introduction

Khovanov homology is an invariant which associates a bi-graded abelian group to a
knot (or link) in S3 [7]. The Jones polynomial of the knot arises as a graded Euler
characteristic of this theory, and as such questions about the Jones polynomial may be
rephrased in terms of Khovanov homology. It is unknown for example, if either of
these invariants detects the unknot. On the other hand, Khovanov homology is known
to be strictly stronger than the Jones polyniomial: Bar-Natan provided examples of
knots with the same Jones polynomial that are distinguished by Khovanov homology
[2]. There have been many techniques developed for producing pairs of knots that have
the same Jones polynomial, and it is natural to ask if these techniques also preserve
Khovanov homology. One of the simplest techniques for generating distinct knots with
the same Jones polynomial is mutation, however it is currently unknown if mutation of
knots leaves Khovanov homology invariant [1, 19].

The aim of this note is to present a construction giving rise to distinct knots that cannot
be distinguished using Khovanov homology. Our main tool is the long exact sequence
in Khovanov homology which is presented, along with a review of Khovanov homology,
in Section 2. In Section 3 we present a general construction for producing pairs of
knots with identical Khovanov homology. This construction is applied in Section 4 to
obtain pairs of distinct prime knots with identical Khovanov homology (Theorem 4.1).
These examples are distinguished by the HOMFLYPT polynomial, and as such must
have distinct triply-graded link homology [6, 8]. In Section 5 we give infinite families
of distinct knots with identical Khovanov homology (Theorem 5.1), and in Section 6
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we construct an infinite family of knots admitting a mutation that is not detected by
Khovanov homology (Proposition 6.1). We conclude with a series of examples in
Section 7.

2 Notation

We briefly review Khovanov homology to solidify notation, and refer the reader to
Khovanov’s original paper [7], as well as the work of Bar-Natan [2, 3] and Rasmussen
[13].

The Khovanov complex of a knot K is generated by first considering an n-crossing
diagram for K together with 2n states, each of which is a collection of disjoint simple
closed curves in the plane. Each state s is obtained from a choice of resolution (the
0-resolution) or (the 1-resolution) for each crossing . By fixing an order on the
crossings, each state s may be represented by an n-tuple with entries in {0, 1} so that
the states may be arranged at the vertices of the n-cube [0, 1]n (the cube of resolutions
for K ). Let |s| be the sum of the entries of the n-tuple associated to s (the height of s).

Let V be a free, graded Z-module generated by 〈v−, v+〉, where deg(v±) = ±1. To
each state we associate V⊗`s where `s > 0 is the number of closed curves in the given
state. The associated grading is referred to as the Jones grading, denoted by q. Set

Cu(K) =
⊕
u=|s|

V⊗`s{|s|}

where {·} shifts the Jones grading via (W{j})q = Wq−j . The chain groups of the
Khovanov complex are given by

CKhu
q(K) =

(
C(K)[−n−]{n+ − 2n−}

)u
q = Cu+n−

q−n++2n−(K)

where [·] shifts the homological grading u as shown. For a given orientation of K ,
n+ = n+(K) is the number of positive crossings in K and n− = n−(K) is the
number of negative crossings in K .

The differentials ∂u : CKhu(K) → CKhu+1(K) come from the collection of edges in
the cube of resolutions moving from height u to height u + 1. Each of these edges
corresponds to exactly one of two operations (m : V ⊗ V → V and ∆ : V → V ⊗ V )
of a Frobenius algebra defined over V , since each edge can be identified with exactly
one change of the form → or → . Fixing a convention so that the faces
of the cube anti-commute, ∂u is the sum of all the maps at the prescribed height. The
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Khovanov homology Kh(K), defined as the homology of the complex (CKhu(K), ∂u),
is an invariant of the knot K ; the (unormalized) Jones polynomial of K arises as∑

j

∑
u

(−1)uqj dim(Khu
j (K) ⊗Q).

Given a knot K( ) with a distinguished positive crossing, there is a short exact
sequence

0 −→ C
(
K( )

)
[1]{1} −→ C

(
K( )

)
−→ C

(
K( )

)
−→ 0.

Since K( ) inherits the orientation of K( ), we set c = n−
(
K( )

)
− n−

(
K( )

)
for some choice of orientation on K( ) to obtain

0 −→ CKhu−c−1
q−3c−2

(
K( )

)
−→ CKhu

q
(
K( )

)
−→ CKhu

q−1
(
K( )

)
−→ 0.

This short exact sequence gives rise to a long exact sequence

→ Khu−c−1
q−3c−2

(
K( )

)
→ Khu

q
(
K( )

)
→ Khu

q−1
(
K( )

) δ∗→ Khu−c
q−3c−2

(
K( )

)
→

where δ∗ is the map induced on homology from (the component of) the differential
δ : CKhu

q−1

(
K( )

)
→ CKhu−c−1

q−3c−2

(
K( )

)
.

Similarly, for a knot K( ) with a distinguished negative crossing there is a long exact
sequence:

→ Khu
q+1

(
K( )

)
→ Khu

q
(
K( )

)
→ Khu−c

q−3c−1

(
K( )

) δ∗→ Khu+1
q+1

(
K( )

)
→

We will make use of one further piece of structure on Kh(K) introduced by Lee [9] and
Rasmussen [12]. The bigraded abelian group Eu,q

1 = Khu
q(K)⊗Q associated to a knot

K may be viewed as the first sheet of a spectral sequence (the Lee spectral sequence)
with differential on the Ei sheet of bidegree (1, 4i). In particular, each of the sums∑

q≡1(mod 4)

∑
u

(−1)u dim(Eu,q
i )

∑
q≡−1(mod 4)

∑
u

(−1)u dim(Eu,q
i )and

must be constant for all i. Further, the spectral sequence converges to Eu,q
∞ ∼= Q ⊕ Q

with Eu,s±1
∞ ∼= Q, where the even integer s is Rasmussen’s invariant. As a result the

above constant is 1 in both cases, giving rise to:∑
q≡1(mod 4)

∑
u

(−1)u dim(Khu
q(K) ⊗Q) = 1(1)

∑
q≡−1(mod 4)

∑
u

(−1)u dim(Khu
q(K) ⊗Q) = 1(2)
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3 Construction

Consider the knot K = Kβ(T, U) shown in Figure 1 (cf. [18]), where β is an element
of the three strand braid group B3 with inverse β−1 . T and U are tangles (or Conway
tangles), that is T = (B3

T , τ ) and U = (B3
U, µ) where B3

T (respectively B3
U ) is a 3-ball

containing a collection of arcs τ (respectively µ) that intersect the boundary of the
3-ball transversally in exactly 4 points [10, 15].

β

β
−1

UT

Figure 1: The knot Kβ(T, U).

There is a well defined Z-action (a half-twist action) on the set of isotopy classes
(fixing endpoints) of tangles that comes from the two strand braid group. For a given
tangle T , write Tσ = T and T σ̄ = T where 〈σ〉 = Z ∼= B2 and σσ̄ = e

(that is, σ = is the standard braid generator). Let Kσ = Kβ

(
Tσ, Uσ̄

)
.

The sum T+U of two tangles is defined by side-by-side concatenation. This generalizes
the half-twist-action: Tσ may be denoted T + (σ adds a twist). A tangle T is

called simple if T + is isotopic (fixing endpoints) to . Note that Tσ is simple
if and only if T is simple. Also, if T and U are simple, then so is the tangle T + U .

For the purposes of this paper, assume that the tangles considered have no closed
components (that is, τ and µ are each a pair of arcs). Note also that since we are
considering knots, we may restrict attention to tangles T and U that have connectivity
of the form and (tangles having connectivity generally give rise to links,
moreover such tangles are never simple). Further, we assume throughout that the braid
β ∈ B3 is such that K = Kβ(T, U) has only one component.

Lemma 3.1 For simple tangles T , U the knots K = Kβ(T, U) and Kσ = Kβ

(
Tσ, Uσ̄

)
have identical Khovanov homology.

Remark We could also consider a similar action that adds twists to tangles on the
left; we make use of this in Section 6.
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Remark It follows from Lemma 3.1 that the knots K and Kσ have identical Jones
polynomial. This fact is proved in [18, Lemma 5.2] without the requirement that the
tangles be simple.

Proof of Lemma 3.1 The proof is an application of the long exact sequences intro-
duced in Section 2. The reader may find it useful to follow the general argument
through on a particular example such as that of Section 7.1.

Our strategy is to distinguish two crossings of Kσ = Kβ

(
Tσ, Uσ̄

)
(the two crossings

added by the action of σ ) and write K( ) = Kβ

(
Tσ, Uσ̄

)
so that K( ) =

Kβ(T, U). Since the tangles T and U are simple by hypothesis, it is easy to check
that K( ) and K( ) (as well as K( ) and K( )) are diagrams for the 2-
component trivial link (apply simplicity, and note that the braids are allowed to cancel).
Let

L = Kh( ) = V ⊗ V ∼= (Z)−2 ⊕ (Z⊕ Z)0 ⊕ (Z)2

and note that Lu = 0 in all homological degrees u 6= 0.

Figure 2: An orientation for the knot Kσ when the permutation associated to β is (1 3 2).

Since it will be necessary to fix orientations, we divide into six cases according to
the various possible permutations associated to braids in B3 . First suppose that the
permutation associated to β is (1 3 2) (as is the case for β = σ−1

1 σ2σ
−2n
1 , for example).

Now suppose that both Tσ and Uσ̄ have connectivity of the form . Then it is

easy to check that T and U have connectivity of the form . Moreover, since the
permutation associated to β is (1 3 2), the permutation associated to β−1 is (1 2 3)
and we can fix the orientation for K( ) shown in Figure 2 (note that it is clear from
this diagram that the knot in question has one component). With this orientation in
hand, we have that the distinguished crossing of Tσ is negative, while the distinguished
crossing of Uσ̄ is positive: K( ). Notice that the resolution K( ) (that is, the
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c=0
**TTTTc=−1 44jjjj

c=0
**TTTT

c=−1
44jjjj

Figure 3: Values of c upon resolution.

tangle T ) does not inherit this orientation. If we resolve with respect to the left-most
(distinguished) crossing, we have the exact sequence

Lu
q+1 −→ Khu

qK( ) −→ Khu−c
q−3c−1K( ) −→ Lu+1

q+1

where one can check that c = n−(K( )) − n−(K( )) = −1. Indeed, since the
braids chosen are inverses of each other, the number of negative and positive crossings
contributed by the braids remains constant. Therefore, to compute the values for c we
need only consider the tangles Tσ and Uσ̄ . Upon resolution, notice that the orientation
on Uσ̄ is preserved (see Figure 3), while the new orientation for the resolution of Tσ

(that is, T ) has precisely one less negative crossing (the crossing we resolved). This is
because the new orientation reverses the orientation on both strands (it can be checked
that this will always preserve the number of positive and negative crossings) so that

c = n−
(
K( )

)
− n−

(
K( )

)
= n−(T) − n−(Tσ)

= n−

( )
− n−

( )
= −1.

Therefore, the exact sequence is given by

(3) Lu
q+1 −→ Khu

qK( ) −→ Khu+1
q+2K( ) −→ Lu+1

q+1.
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Now, resolving the second crossing, we make similar observations. The orientation
on the strands of the tangle T are both reversed once more (see Figure 3), so that
the number of negative crossings contributed by T is left unchanged. On the other
hand, the resolution taking Uσ̄ to U removes a positive crossing, and preserves the
orientation on the tangle U . Therefore

c = n−
(
K( )

)
− n−

(
K( )

)
= n−(U) − n−(Uσ̄)

= n−

( )
− n−

( )
= 0

and we have the exact sequence

Lu−1
q−1 −→ Khu−1

q−2K( ) −→ Khu
qK( ) −→ Lu

q−1

which may be rewritten as

(4) Lu
q+1 −→ Khu

qK( ) −→ Khu+1
q+2K( ) −→ Lu+1

q+1.

Combining the exact sequences 3 and 4 we obtain the the diagram of exact sequences

(5) Lu
q+1 // Khu

qK( )
$$

Lu
q+1 // Khu

qK( ) // Khu+1
q+2K( ) //

00

Lu+1
q+1

Lu+1
q+1

from which we deduce that

Khu
qK( ) ∼= Khu+1

q+2K( ) ∼= Khu
qK( )

for all homological gradings u > 0 since Lu = 0. Moreover, when u = 0 we have

(Z)−2 ⊕ (Z⊕ Z)0 ⊕ (Z)2 // Kh0
qK( )

$$
(Z)−2 ⊕ (Z⊕ Z)0 ⊕ (Z)2 // Kh0

qK( ) // Kh1
q+2K( ) //

22

0

0

so that
Kh0

qK( ) ∼= Kh0
qK( )

for q 6= −3,−1, 1.
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A slightly different diagram of exact sequences is obtained if the right-most distin-
guished crossing of K( ) is resolved first; we apply a similar argument for the
(switched) values of c. This time, we first resolve the (positive) crossing of Uσ̄ to
obtain U with its orientation unchanged (see Figure 3). The induced orientation on
Tσ reverses the orientation of both strands (as before) so that the number of positive
and negative crossings contributed by Tσ are once more unchanged (of course, the
contribution from the braids is constant, as before). Therefore, we lose only a positive
crossing, and obtain

c = n−
(
K( )

)
− n−

(
K( )

)
= n−(U) − n−(Uσ̄)

= n−

( )
− n−

( )
= 0,

which in turn gives the exact sequence

(6) Lu−1
q−1 −→ Khu−1

q−2K( ) −→ Khu
qK( ) −→ Lu

q−1.

Resolving the distinguished crossing of Tσ to obtain T , we have that the orientation
on U is once more preserved (see Figure 3), so that the contribution to c comes from
comparing T and Tσ only. Once again, we remove the distinguished crossing (a
negative crossing) and reverse orientation of both the strands of T . Therefore,

c = n−
(
K( )

)
− n−

(
K( )

)
= n−(T) − n−(Tσ)

= n−

( )
− n−

( )
= −1

and the we obtain the sequence

(7) Lu−1
q−1 −→ Khu−1

q−2K( ) −→ Khu
qK( ) −→ Lu

q−1

where the gradings are shifted accordingly as in the case of the exact sequence 4. This
time, sequences 6 and 7 combine to give the diagram of exact sequences

(8) Lu−1
q−1

!!
Lu−1

q−1
// Khu−1

q−2K( ) //

..

Khu
qK( ) // Lu

q−1

Khu
qK( ) // Lu

q−1



Knots with identical Khovanov homology 9

and we obtain the isomorphism

Khu
qK( ) ∼= Khu−1

q−2K( ) ∼= Khu
qK( )

whenever u < 0. When u = 0, we have

0
!!

0 // Kh−1
q−2K( ) //

..

Kh0
qK( ) // (Z)−2 ⊕ (Z⊕ Z)0 ⊕ (Z)2

Kh0
qK( ) // (Z)−2 ⊕ (Z⊕ Z)0 ⊕ (Z)2

so that
Kh0

qK( ) ∼= Kh0
qK( )

for q 6= −1, 1, 3.

Combining the information from diagrams 5 and 8, we conclude that

Khu
qK( ) ∼= Khu

qK( )

except when u = 0 and q = ±1. In fact, diagram 8 tells us that the torsion parts for
u = 0 and q = ±1 are isomorphic. Indeed, since L is torsion free we have

0
$$

0 // Tor
(

Kh−1
q−2K( )

)
//

--

Tor
(
Kh0

qK( )
)

// 0

Tor
(
Kh0

qK( )
)

// 0

hence
Tor

(
Kh0

qK( )
) ∼= Tor

(
Kh0

qK( )
)

for all q.

We pause here to remark that the cases with different connectivity for Tσ and Uσ̄

( , and , and , ) proceed in the same way, with only minor
adjustments to the induced orientations. In fact, the proof amounts to reordering and/or
rotating the oriented diagrams encountered in Figure 3. We leave this step to the reader.

To treat the other possible permutations associated to β it suffices to check that the
same values for c are obtained upon resolution of the distinguished crossings. If this is
the case, then the rest of the argument goes through unchanged. First notice that the if
the permutation associated to β is (1 2 3) then it suffices to rotate each of the diagrams
in Figure 3 by 180 degrees and exchange the diagrams of the middle column to obtain
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the same values for c. We do not need to consider the permutations (1) or (2 3) since it
can be checked that if β has either of these associated permutations, the knot Kβ(T, U)
will have more than one component. It remains to check the permutations (1 2) and
(1 3). Notice that in either case, the oriented diagrams for K( ) and K( ) are
exactly as in Figure 3 (with obvious adjustments to the connectivity of the braids). We
leave it to the reader to check that the diagrams for K( ) and K( ) in both cases
admit orientations that give rise to:

K( )
c=0

**UUUUUUUUU

K( )

c=−1 44iiiiiiiii

c=0 **UUUUUUUUU K( )

K( )
c=−1

44iiiiiiiii

This in turn gives rise to the same diagrams of exact sequences 5 and 8 for all β such
that Kβ(T, U) has one component.

Finally, note that acting by σ̄ (instead of σ ) on K switches the two exact sequences in
each of the diagrams 5 and 8. This is due once more to the values obtained for c:

K( )
c=−1

**UUUUUUUUU

K( )

c=0 44iiiiiiiii

c=−1 **UUUUUUUUU K( )

K( )
c=0

44iiiiiiiii

In particular, we obtain the same isomorphisms of Khovanov homology groups.

With these observations in hand, it remains now to analyze the the free part of
Kh0

±1K( ) and Kh0
±1( ). To this end we work over Q, and apply Equation 1

and Equation 2.

Suppose q = 1, then from Equation 1 we have that∑
q≡1(mod 4)

∑
u

(−1)u dim(Khu
qK( ) ⊗Q)

=
∑

q≡1(mod 4)

∑
u

(−1)u dim(Khu
qK( ) ⊗Q)

and since all groups are isomorphic away from (u, q) = (0,±1), this implies that

dim(Kh0
1K( ) ⊗Q) = dim(Kh0

1K( ) ⊗Q).

In particular, Kh0
1K( ) ⊗Q ∼= Kh0

1K( ) ⊗Q.
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Applying a similar argument to the case q = −1 using Equation 2 gives the required
isomorphism Kh0

−1K( ) ⊗Q ∼= Kh0
−1K( ) ⊗Q and we conclude that

Kh(K) ∼= Kh(Kσ).

We have yet to see that the knots K and Kσ are distinct. This is the focus of Section 4,
Section 5 and Section 6; examples are given in Section 7.

4 Distinct prime knots with identical Khovanov homology

According to Lickorish [10, Theorem 5], a tangle T = (B3
T , τ ) is prime if and only

if the two-fold branched cover of B3
T (branched over τ ) is irreducible and boundary

irreducible. Since the two-fold cover of a sphere with 4 branch points is a torus, prime
tangles are those two-fold branched covered by non-trivial knot complements. Note
that T is prime if and only if Tσ is prime.

Theorem 4.1 For every simple, prime tangle T there exists a pair of distinct prime
knots (each containing T ) with identical Khovanov homology but distinct HOMFLYPT
polynomial (and hence distinct triply-graded link homology).

Proof Choose β = σ−1
1 σ2σ

−2
1 and the pair of tangles (T, T?) in the configuration

of Figure 1 where U = T? is the mirror image of T (hence prime and simple). This
gives rise to a pair of knots Kβ(T, T?) and Kβ(Tσ, (T?)σ̄) with identical Khovanov
homology by applying Lemma 3.1. It is shown in [18, Theorem 1.1] that this pair of
knots have distinct HOMFLYPT polynomials from which we conclude that the knots
are distinct, and observe that they must have different triply-graded homology. Finally,
it follows from the work of Lickorish [10, Theorem 1 and Lemma 2] that both of the
knots constructed are prime whenever T is a prime tangle; a complete argument is
given in [18, Theorem 1.1].

Remark Since the pair of knots generated in the proof of Theorem 4.1 have distinct
HOMFLYPT polynomial they can not be related by mutation (cf. Section 6).

Examples of knots arising as in Theorem 4.1 (in particular, examples of prime simple
tangles) are given in Section 7.2.
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5 Constructing infinite families

Although one needs a mechanism to prove that the knots obtained are distinct, the
action of σ defined in Section 3 may be iterated to obtain infinite families of knots
with identical Khovanov homology. Luse and Rong classified the particular familly
Kβ(T, U) taking β = σ−1

1 σ2σ
−2n
1 in the case where T and U horizontal full-twists

[11].

Theorem 5.1 For each n ∈ N there is an infinite family of distinct knots with identical
Khovanov homology.

Proof Fix n ∈ N and consider the family of knots K` = Kβ(σ2`, σ−2`) where σ2`

is the tangle consisting of ` horizontal full-twists, and β = σ−1
1 σ2σ

−2n
1 . The tangles

are clearly simple, so by iterating Lemma 3.1 K` and K`′ have identical Khovanov
homology for any `, `′ ∈ Z. According to [11, Theorem 1.1], K` and K`′ are distinct
knots whenever gcd(`, 2n + 1) 6= gcd(`′, 2n + 1). If pα1

1 pα2
2 · · · pαk

k is the prime
decomposition of 2n + 1, we can choose ` = pi (for any of the i ∈ {1, . . . , k}) so that
gcd(`, 2n + 1) = pi . Letting `′ range over all primes that do not appear in the prime
decomposition of 2n + 1 gives the result.

Remark The classification of this family of knots in the case n = 1 is due to Kanenobu
[5]; this example is given in Section 7.4.

6 A remark on mutation

Knot mutation (cf. [15]) is a well known operation on tangles that alters knots without
changing any of the skein-type polynomial invariants (ie. Jones, HOMFLYPT, . . . ).
Although Wehrli has given examples of split links related by mutation that have different
Khovanov homology [19], it is unknown if mutation preserves Khovanov homology
for knots [1, 19]. As a third application of Lemma 3.1, we give an infinite family of
knots that admit a mutation which is not detected by Khovanov homology.

Consider the familly of knots Km(T) = Kβ(σm, T) as in Figure 1, where σm is the
tangle consisting of m ∈ Z horizontal half-twists (and β is such that Km(T) has only
one component).

Proposition 6.1 The mutation µ that flips a simple tangle T in the knot digram
Km(T) across the horizontal axis is not detected by Khovanov homology. That is
Kh(Km(T)) ∼= Kh(Km(µT)) for all m ∈ Z.
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Proof If we consider a similar construction to that of Section 3 allowing B2 to act on
the left (ie. σ : T 7→ T and σ̄ : T 7→ T ), the proof of Lemma 3.1 goes
through in the same way for this left action (on the same class of knots), and hence
leaves Khovanov homology invariant. Indeed, one need only consider a 180 degree
rotation of Figure 1, and the proof goes through verbatim after renaming β = β−1 ,
T =

U

and U =

T

.

Since the tangles T and σm are simple, we can can apply Lemma 3.1 to Km(T)
resulting in a new knot Km+1(T σ̄ ) with identical Khovanov homology (note that with
this notation (σm)σ = σm+1 ). The key observation is that acting on the left by the
inverse σ̄ removes the twist added to σm , while the result of acting by σ on the left of
T σ̄ is a tangle isotopic (fixing endpoints) to the mutant µT . Hence we obtain a third
knot Km(µT) – precisely the desired mutant – with identical Khovanov homology.

The elements of the proof of Proposition 6.1 can be seen in the example given in
Section 7.5, in particular Figure 10.

7 Examples

The preceding sections show that the construction of Section 3 gives rise to a wide
range of knots; in this section we give some particular examples. The notation for
knots used below is consistent with Rolfsen’s notation [14] for knots with fewer that
11 crossings, and KNOTSCAPE notation [17] otherwise up to mirrors (see also the Knot
Atlas [4]).

7.1 A first example

Figure 4: The knots 88 and 10129.

The knots 88 and 10129 admit diagrams of the form of Figure 1 with β = σ−1
1 σ2σ

−2
1 ,

as shown in Figure 4. This explains the coincidence in Khovanov homology enjoyed
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by this pair of knots, a fact well documented in [4]. It may be illustrative to revisit the
proof of Lemma 3.1 with this particular example in hand. Observe that as a result of
this choice of diagrams, 88 is obtained by resolving the distinguished crossings shown
in Figure 5 by → and → .

Figure 5: The distinguished crossings for the knot 10129 .

The knot K( ) = 10137 , so that the diagram of exact sequences 5 gives

0 // Khu
q(88)

##

0 // Khu
q(10129) // Khu+1

q+2(10137) //

22

0

0

for u > 0 and hence the isomorphism Khu
q(88) ∼= Khu+1

q+2(10137) ∼= Khu
q(10129) for

u > 0. Similarly, The knot K( ) = 89 (this knot is shown in Figure 9), so that the
diagram of exact sequences 8 gives

0
��

0 // Khu−1
q−2(89) //

//

Khu
q(10129) // 0

Khu
q(88) // 0

for u < 0 and Khu
q(88) ∼= Khu+1

q+2(89) ∼= Khu
q(10129) for u < 0.

As in the proof of Lemma 3.1, the isomorphism in homological grading u = 0 follows
from Diagram 8 (for the torsion part) and Equation 1 and Equation 2 (for the free part).

Remark Note that this example illustrates the case of tangle connectivity of the form
for T and for U in the proof of Lemma 3.1.
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7.2 Pairs of non-mutant prime knots

To illustrate Theorem 4.1, we first need examples of prime simple tangles; these are
provided in Figure 6. The fact that these are prime tangles for all k ≥ 0 is shown by
Lickorish [10, Section 2 Example (a)]. That these tangles are simple for k ≥ 0 is an
application of k + 2 Reidemeister type II moves followed by a single Reidemeister
type I move to see that T + is isotopic (fixing endpoints) to .

k

-k-1

Figure 6: A prime simple tangle for k ≥ 0.

The knots obtained from this construction in the case k = 0 are shown in Figure 7.

Figure 7: Non-mutant prime knots with identical Khovanov homology.

Remark In the proof of Theorem 4.1, the fact that the knots obtained (for example,
those of Figure 7) have distinct HOMFLYPT polynomials depends on the fact that
Kβ

(
,

)
and Kβ

(
,

)
have distinct HOMFLYPT polynomial (cf. [18, Theo-

rem 1.1]). In the examples constructed for the proof Theorem 4.1 using β = σ−1
1 σ2σ

−2
1 ,

the knots are 41#41 and 89 ; these have distinct HOMFLYPT polynomials (cf. Sec-
tion 7.4). However any such pair will do, and many more examples exist; we give two
to conclude this section.

If β = σ−1
1 σ2σ

−3
1 then K = Kβ

(
,

)
= 52#5?

2 and we obtain Kσ = 1048 . These
have the same Khovanov homology by Lemma 3.1, while K and Kσ are distinguished
by the HOMFLYPT polynomial.
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If β = σ−1
1 σ2σ

−1
1 σ2σ

−2
1 then K = Kβ

(
,

)
= 63#63 and we obtain Kσ = 12a

819 .
Again, these have the same Khovanov homology, while K and Kσ are distinguished
by the HOMFLYPT polynomial.

Remark The reader may have observed that the base case in all of these examples is
provided by taking a connected sum of a 2-bridge knot with its mirror image. While it
is tempting to guess that any such connected sum will give rise to a family of examples,
we leave it as an exercise to show that (at very least) the (2, n)-torus knots should
be omitted since the action of σ is trivial on these examples (consider β = σn

1 or
β = σ−1

1 σn−2
2 σ−1

1 ).

7.3 An aside on non-simple tangles

It is natural to ask if Lemma 3.1 holds without the simplicity assumption on the tangles.
For example, the knots 12a

990 and 12a
1225 arise in this way (consider the braid closure of

βσ3
2β

−1σ−3
2 where β = σ−1

1 σ2σ
−2
1 ). A second example of this phenomenon is given

by the knots 12a
427 and 15n

45009 shown in Figure 8. Both of these examples share the
same Khovanov homology (verified using the software KhoHo [16]). Indeed, as noted
in Section 3, the simplicity requirement on the tangles is not required to show that
knots obtained in this way have identical Jones polynomial [18]. However it seems
optimistic (though tempting) to conjecture that Lemma 3.1 holds for all tangles.

Question Is there a knot Kβ(T, U) with non-simple tangles for which the action of σ

is detected by Khovanov homology?

While the construction of Section 3 provides a wide range of examples of knots with
identical Khovanov homology, the examples given in this section serve as a reminder
that the restriction to simple tangles is a particularly special case.

Figure 8: The knots 12a
427 and 15n

45009 .
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7.4 Kanenobu’s knots

It has been shown that the action of B3 may be iterated to obtain infinite families. We
illustrate the case n = 1 of Theorem 5.1 so that the braid in question is once more
β = σ−1

1 σ2σ
−2
1 to obtain a particular infinite family of knots with identical Khovanov

homology. Let K = Kβ

(
,

)
so that Kσ = Kβ

(
,

)
; the knots K = 41#41 ,

Kσ = 89 and Kσ2
= 12n

462 are shown in Figure 9. By Lemma 3.1 these knots have
the same Khovanov homology, while 41#41 and 89 (equivalently 89 and 12n

462 ) have
different HOMFLYPT polynomials. It should be noted that 41#41 and 12n

462 share the
same HOMFLYPT polynomial, and the interested reader should consult [5] in which
Kanenobu originally classified this example. In particular, this provides an infinite
family of distinct knots with homology Kh(89), and the n = 1 case for Theorem 5.1.

Figure 9: The first three knots in Kanenobu’s sequence.

7.5 Mutants

σ̄ //

mutate

##

mutate

||zzt t t t

σ̄ //

Figure 10: Two pairs of mutants illustrating Proposition 6.1.
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The family of non-alternating knots with 13 crossings given in Figure 10 illustrate
the construction used in the proof of Proposition 6.1. The four knots in question are
arranged in Figure 10 so that pair in the first row (13n

164 and 13n
922 ) are related by

twisting (and hence have identical Khovanov homology by Lemma 3.1), as are the
pair in the second row (13n

161 and 13n
795 ). Note that we are acting by the inverse σ̄

in this example. The columns are related by mutation (flipping across the horizontal
axis), and the diagonal arrow in Figure 10 corresponds to the left action of σ ∈ B2

used in the proof of Proposition 6.1, the second step of the mutation relating 13n
164

and 13n
161 (the knots in the left column of Figure 10). That is, each mutant pair (and

indeed, any mutant pair of form given in the proof of Proposition 6.1) can be seen as
the composition of right (twist) action, followed by a left (untwist) action.
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