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RESUMÉ

Cette thèse établit, et étudie, un lien entre l’homologie de Khovanov et la topolo-
gie des revêtements ramifiés doubles. Nous y introduisons certaines propriétés de sta-
bilité en homologie de Khovanov, dont nous dérivons par la suite des obstructions à
l’existence de certaines chirurgies exceptionnelles sur les nœuds admettant une involu-
tion appropriée. Ce comportement, analogue à celui de l’homologie de Heegaard-Floer
sous chirurgie, renforce ainsi le lien existant (dû à Ozsváth et Szabó) entre homologie
de Khovanov, et homologie d’Heegaard-Floer des revêtements ramifiés doubles. Dans
l’optique de poursuivre et d’exploiter plus avant cette relation, les méthodes développées
dans ce travail sont appliquées à l’étude des L-espaces, et à déterminer, en premier lieu,
si l’homologie de Khovanov fournit un invariant des revêtements ramifiés doubles, et en
deuxième lieu, si l’homologie de Khovanov permet de détecter le nœud trivial.
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ABSTRACT

This thesis establishes and investigates a relationship between Khovanov homol-
ogy and the topology of two-fold branched covers. Stability properties for Khovanov
homology are introduced, and as a result we obtain obstructions to certain exceptional
surgeries on knots admitting an appropriate involution. This stable behaviour is analo-
gous to the behaviour of Heegaard-Floer homology under surgery, strengthening the re-
lationship (due to Ozsváth and Szabó) between Khovanov homology and the Heegaard-
Floer homology of the two-fold branched cover. In the interest of pursuing and exploiting
this relationship further, the methods developed in this work are applied to the study of
L-spaces, as well as to the questions of whether Khovanov homology yields an invariant
of two-fold branched covers and whether Khovanov homology detects the trivial knot.
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INTRODUCTION

Khovanov’s introduction of a homology theory for links in the three-sphere (Khovanov,

2000), followed by Bar-Natan’s early work providing calculations of this invariant for

knots with 11 crossings (Bar-Natan, 2002), immediately pointed to phenomenon de-

manding explanation. While these calculations exhibited that Khovanov homology was

strictly stronger than the Jones polynomial (Jones, 1985) – a quantity arising as graded

Euler characteristic – a vast majority of these small knots had homology that could be

determined from the Jones polynomial and the signature. In particular, many of the

knots in question had homology supported in a single diagonal, and such knots became

referred to as thin.

It was subsequently conjectured that any non-split alternating link should be thin, and

this was later proved in the seminal work of Lee (Lee, 2005). The machinery developed

in the proof of this fact led to the definition of the Lee-Rasmussen spectral sequence,

and ultimately Rasmussen’s definition of the s invariant together with his celebrated

combinatorial proof of the Milnor conjecture (Rasmussen, 2004a). It was immediately

clear that Khovanov homology contained powerful geometric information, while being

highly computable by virtue of its combinatorial definition.

The question of homological width more generally, that is, the number of diagonals

supporting the Khovanov homology of a given link, has received continued attention.

In particular, Shumakovitch provided further computations and conjectures in his work

(Shumakovitch, 2004b), while Turner showed that torus knots provide examples of arbi-

trarily wide homology (Turner, 2008) (see also (Stošić, 2007)). Ozsváth and Manolescu

extended Lee’s result by exhibiting that quasi-alternating links (a class strictly larger

that alternating) are thin (Manolescu and Ozsváth, 2007), and more recently, Lowrence

has studied the width of closures of 3-braids (Lowrance, 2009).
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In the direction of applications, Ng showed that Khovanov homology yields bounds

on the Thurston-Benequin number of a knot (Ng, 2005), while Plamenevskaya defined

a transverse invariant from Khovanov homology (Plamenevskaya, 2006a), related to

the contact invariant in Heegaard-Floer homology (Plamenevskaya, 2006b) (see also

(Baldwin and Plamanevskaya, 2008)). Both results point to interesting interaction with

contact topology.

However despite these applications Khovanov homology, like the Jones polynomial, still

lacks a complete geometric understanding. Various programs and frameworks exist in

pursuit of this important open problem.

For example, Seidel and Smith have defined a homology theory for links from sym-

plectic geometry, conjectured to be equal to a suitable grading-collapsed version of

Khovanov homology (Seidel and Smith, 2006). Further, it has been observed that there

is a coincidence between the homology of an SU(2) representation space of the fun-

damental group of the knot complement, and Khovanov homology (for certain simple

knots). Two frameworks for studying this phenomenon have been proposed by Kron-

heimer and Mrowka (Kronheimer and Mrowka, 2008) and Jacobsson and Rubinsztein

(Jacobsson and Rubinsztein, 2008). In addition, work of Gukov et. al. proposes a con-

jectural relationship between generalizations of Khovanov homology (due to Khovanov

and Rozansky (Khovanov and Rozansky, 2008)), and BPS invariants related to string

theory, actively studied via Gromov-Witten theory (see for example (Gukov et al.,

2007; Gukov et al., 2005)).

With this in mind, further geometric applications of the theory should be pursued.

Such a pursuit should shed light on the geometric underpinnings of Khovanov homol-

ogy, while developing the theory’s role in low-dimensional topology and exploiting the

combinatorial nature of the theory.

That further applications should exist follows from an important advance due to Ozváth

and Szabó: Khovanov homology may be viewed as the E2 term of a spectral sequence

converging to the Heegaard-Floer homology of the two-fold branched cover (Ozsváth and



3

Szabó, 2005c). Since the latter has seen many powerful applications in low-dimensional

topology since its inception, it seems reasonable to hope that Khovanov homology –

viewed as an approximation of Heegaard-Floer homology in this setting – might hold

further geometric information about two-fold branched covers. Indeed, it was an interest

in better understanding the higher terms and differentials of this spectral sequence that

led to many of the results in this thesis.

Summary of principal results

The primary results in this thesis may be broken into three parts.

Homological width as a surgery obstruction. Lee’s result, combined with work

of Hodgson and Rubinstein (Hodgson and Rubinstein, 1985) imply that if Σ(S3, L) is

a lens space then L must be a thin link, where Σ(S3, L) denotes the two-fold branched

cover of the three-sphere with branch set L (see Theorem 4.24). Following work of

Montesinos (Montesinos, 1976), as well as work of Boileau and Otal (Boileau and Otal,

1991), we show (see Theorem 4.25):

Theorem. If Σ(S3, L) has finite fundamental group then L is supported in at most two

diagonals.

Thus, relaxing Lens spaces to manifolds with finite fundamental group, the homological

width of the associated branch sets remains relatively tame.

Given a strongly invertible knot in S3, Dehn surgery on K may be viewed as a branch

cover S3
p/q(K) ∼= Σ(S3, τ(p

q )). The width of the branch set is well behaved, as a result of

a stability lemma (see Lemma 5.1) established in Chapter 5. This in turn implies that

the quantity wmin (respectively wmax), the minimum (respectively maximum) width

attained by the branch sets τ(n) corresponding to integer fillings is well defined. In fact

these quantities typically give upper and lower bounds for the width of the link τ(p
q )

(see Theorem 6.5):

Theorem. Let K be a strongly invertible knot in S3, so that S3
p/q(K) ∼= Σ(S3, τ(p

q )).
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Under mild genericity conditions,1 wmin > 2 implies that Dehn surgery on K never

yields a manifold with finite fundamental group. Moreover, wmin may be determined on

a finite collection on integers.

Note that wmin > 1 may be applied as an obstruction to lens space surgeries in the same

way (see Theorem 6.4). While the genericity assumptions we impose seem mild relative

to the branch sets that arise in practice, we remark that in the broader context of the

exceptional surgery problem, tools such as the cyclic surgery theorem (Culler et al.,

1987), as well as extensions due to Boyer and Zhang, (Boyer and Zhang, 1996; Boyer and

Zhang, 2001) may be used to restrict the cases that must be checked should non-generic

phenomena be encountered.

Khovanov homology and two-fold branched covers. By studying constructions of

branch sets for Seifert fibered spaces, we answer a question of P. Ozsváth (see Corollary

7.5):

Theorem. The total rank of the reduced Khovanov homology is not an invariant of the

two-fold branched cover.

This is demonstrated by example: Brieskorn spheres arise as two-fold branched covers

of S3, typically in two distinct ways. We determine these branch sets, and establish

that the rank of the Khovanov homology distinguishes the pair of branch sets in some

cases (see Example 7.4).

As discussed by Ozsváth, this question arises naturally when considering the possibility

of defining an extension of Khovanov’s invariant for more general closed 3-manifolds, by

specifying the E2 term of a spectral sequence converging to any theory satisfying Floer’s

exact triangle (Ozsváth, 2008). Such a generalization should coincide with Khovanov

homology when restricting to two-fold branched covers.

1Easily verified, and seemingly always satisfied, these conditions are disussed at length (and in
particular made precise), in Section 5.6 and thoughout Chapter 6.
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Invariants for detecting the trivial knot. In light of the spectral sequence relating

Khovanov homology and Heegaard-Floer homology, one might hope to gain information

about the former by applying geometric properties of the latter. In particular, the

following open problem is of considerable interest:

Question. Does Khovanov homology detect the trivial knot?

This does not follow immediately from the spectral sequence, due to the existence of

manifolds with Heegaard-Floer homology of rank one. However, such manifolds are

rare, and as a result the above question has an affirmative answer on a particularly

large class of knots (see Theorem 8.2). As a result, by pre-composing with certain

satellite constructions, it is possible to construct a combinatorial invariant that detects

the trivial knot using Khovanov homology (see Corollary 8.4):

Theorem. The Khovanov homology of the (2, 1)-cable of a knot detects the trivial knot.

This result is joint work with M. Hedden (Hedden and Watson, 2008), and is in fact a

single example of a satellite construction with which to pre-compose to yield an invariant

for detecting the trivial knot.

Overview

The first three chapters of this work comprise an idiosyncratic introduction to the areas

in which this work is cast; the majority of the content can be found elsewhere, and we

endeavour to provide thorough references as well as context. The next two chapters

contain our primary technical results, on which the final three chapters containing the

principal results of this work are based.

Chapter 1 contains the requisite material on 3-manifold topology that will be assumed

throughout. Everything contained therein is standard, and this chapter serves to estab-

lish the conventions relied on in the rest of the work.
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Chapter 2 reviews Khovanov’s construction of a homology theory categorifying the

Jones polynomial. We make use of a non-standard normalization natural to our setting,

as well as introduce the σ-normalized Khovanov homology. This normalization seems to

be interesting, and arises naturally from the work of Manolescu and Ozsváth. We also

prove some extensions of this work, obtaining new versions of the skein exact sequence.

Chapter 3 gives a brief outline of Heegaard-Floer homology. It is very difficult to

give a complete treatment of this area of intense activity, and we choose to focus on

aspects relating to L-spaces and two-fold branched covers. In particular, we give a

characterization of Seifert fibered L-spaces which appears to be new.

Chapter 4 develops the necessary material to prove the width bound for branch sets

of manifolds with finite fundamental group. In so doing, we prove a surgery result

for quasi-alternating knots that seems very natural. In particular, this strengthens the

relationship between this class of links (as branch sets) and certain well known L-spaces.

Chapter 5 proves a form of stability for the Khovanov homology of branch sets for

integer surgeries on a strongly invertible knot that is analogous to the stable behaviour

of Heegaard-Floer homology for large surgeries. This is an essential step in making

width a computable surgery obstruction. With this stability lemma in hand, we prove

upper and lower bounds for width and establish genericity conditions for which these

bounds depend only on the integer fillings.

Chapter 6 states the surgery obstructions derived from Khovanov homology, and gives

a range of examples illustrating the application of these obstructions. Notably, we

compare our obstructions to some of those provided by the Alexander polynomial (as a

result of Heegaard-Floer homology).

Chapter 7 gives some Seifert fibered examples of manifolds that two-fold branch cover

the three-sphere in two distinct ways, with branch sets distinguished by the rank of the

reduced Khovanov homology. This shows that Khovanov homology is not an invariant

of the two-fold branched cover.
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Chapter 8 gives various results pertaining to the characterization of the trivial knot. In

particular, we establish a large class of knots (containing unknotting number one knots)

within which it may be demonstrated that Khovanov homology detects the trivial knot.

This is the main ingredient for establishing invariants that detect the trivial knot com-

bining satellites and Khovanov homology. In a similar vein, we give a characterization

of the trivial knot, among strongly invertible knots, from Khovanov homology.

The conclusion contains some open questions for continued research, and we have

included an appendix giving an example of our obstructions applied to surgery on a

knot in the Poincaré homology sphere.

Conventions and Calculations

Knots with 10 or fewer crossings were tabulated by Bailey and Rolfsen (Rolfsen, 1976,

Appendix C), and this work introduced a notation that has now become standard.

For knots with 16 or fewer crossings, tabulations are due to Hoste and Thistlethwaite,

available via Knotscape (Hoste and Thistlethwaite, 1999), with a slightly different no-

tation. As has become standard (see The Knot Atlas (Bar-Natan et al., 2004)), we

will use Rolfsen’s notation for knots with 10 or fewer crossings, and Knotscape notation

otherwise.

The examples computed during the course of this research relied heavily on computa-

tional software by Shumakovitch (KhoHo) (Shumakovitch, 2004a) and Bar-Natan and

Greene (JavaKh) (Bar-Natan and Green, 2006). The former was an improvement on

Bar-Natan’s pioneering software, and is an extremely useful tool. However, the speed

improvements of JavaKh are enough to make the obstructions given in this work prac-

tically calculable.

In general, computations given in this thesis were obtained using JavaKh.
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Figure 0.1 Logical dependance: Chapters 1 to 3 give background and are essentially
independent, Chapters 4 and 5 establish technical results on which Chapters 6 to 8
(comprising the main results of this thesis) are based. The solid arrows give the de-
pendance of the central material, while the dashed arrows indicate dependance of other
results and remarks.



CHAPTER I

DEHN SURGERY ON 3-MANIFOLDS

We begin by briefly outlining the material that will be needed in the sequel pertaining

to 3-manifolds and Dehn surgery. All of this material is well-known, and a standard

reference is Rolfsen (Rolfsen, 1976). Much of what we will require can be found in

the survey paper by Boyer (Boyer, 2002). We endeavour to give accurate references

throughout for the results quoted, however for the appropriate historical context we

point the reader to Gordon’s article on the matter (Gordon, 1999).

1.1 Slopes and fillings

Let M be a compact, connected, orientable 3-manifold with torus boundary.

Definition 1.1. A slope in ∂M is an element α ∈ H1(∂M ; Z)/ ± 1, representing the

isotopy class of a simple closed curve in ∂M .

Since H1(∂M ; Z) ∼= Z⊕Z, the slopes in ∂M may be parameterized by reduced rational

numbers {p
q} ∈ Q ∪ {1

0} once a basis (α, β) for H1(∂M ; Z) has been fixed. That is,

any slope may be written in the form pα + qβ for relatively prime integers p and q, so

that the slope α is represented by 1
0 . There is some redundancy in this description that

may be taken care of by fixing the convention q ≥ 0, say. Notice that, as a basis for

H1(∂M ; Z), we have that α and β may be isotoped to intersect transversally in a single

point. More generally, it will be useful to measure the distance between any two slopes

as follows.
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Definition 1.2. The distance between two slopes α, β ∈ H1(M ; Z)/±1 is given by their

geometric intersection number, denoted ∆(α, β).

As a result, notice that ∆(α, β) = |α · β| for any α, β ∈ H1(M ; Z)/± 1.

Any slope determines a homeomorphism fα : S1×S1 → ∂M , up to isotopy, by specifying

fα(µ) = α where µ = S1 × {point}.

Definition 1.3. Let µ = ∂D2 × {point} in the boundary of a solid torus D2 × S1. For

a given slope α on ∂M we define the Dehn filling of M to be the closed manifold

M(α) = M ∪fα D2 × S1

where the identification of the boundaries is specified by the homeomorphism fα.

1.2 Surgery on knots

Examples of manifolds with torus boundary are given by complements of knots in S3,

and this is where the notion of Dehn filling originates (Dehn, 1910). That is, M =

S3rν(K) where ν(K) = D2×K is an open tubular neighbourhood of the knot K ↪→ S3.

A Dehn filling on such an M in referred to as a Dehn surgery, or simply surgery on the

knot K (Rolfsen, 1976, Chapter 9).

In this setting there is a preferred basis for surgery provided by a pair of canonical slopes.

First, the knot meridian µ = ∂D2 × {point}, and second, the longitude of the knot λ

resulting from the fact that K bounds an oriented surface (a Seifert surface) in S3. That

is, any knot K ↪→ S3 comes equipped with a preferred framing given by the intersection

of a Seifert surface for K with the boundary ∂M .1 We may choose orientations on µ

and λ so that µ · λ = 1, and this convention will be assumed throughout.

Now if α is a slope in ∂M , we may write α = ±(pµ + qλ) for q ≥ 0. This gives rise

1Indeed, this is always the case when considering a knot in an integer homology sphere, or more
generally, a null-homologous knot in any 3-manifold.
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to the notation M(α) = S3
p/q(K) for the surgery. Invoking the convention 1

0 = ∞, the

trivial surgery S3
1/0(K) ∼= S3 is sometimes called the infinity surgery. Pertaining to

orientations however, we note that

S3
p/q(K) ∼= −S3

−p/q(K
?)

where K? denotes the mirror image of K, and −M denotes M with opposite orientation.

As a result, we may always work with positive surgery coefficients, at the expense of

taking mirror images.

By nature of this construction, we have that

π1(S3
p/q(K)) ∼= π1(M(α)) ∼= π1(M)

/
〈〈α〉〉,

where 〈〈α〉〉 denotes the normalizer of 〈α〉 ⊂ π1(M). And, since H1(M ; Z) ∼= Z ∼= 〈µ〉

by Alexander duality,

H1(S3
p/q(K); Z) ∼= H1(M(α); Z) ∼= H1(M ; Z)

/
α ∼= Z/pZ.

Notice in particular that

∣∣H1(S3
p/q(K); Z)

∣∣ = ∣∣H1(M(α); Z)
∣∣ = ∆(α, λ)

(see, more generally, Lemma 1.5 below).

Example. As a first example, when K is the right-hand trefoil,

S3
+1(K) is the Poincaré homology sphere (Poincaré, 1904). Indeed,

this is Dehn’s original construction of this particular integer homol-

ogy three-sphere (Dehn, 1910). See (Rolfsen, 1976, Chapter 10) for a

detailed account of the equivalence between the constructions of Dehn and Poincaré, and

(Kirby and Scharlemann, 1979) for an account of various constructions of this famous

3-manifold.
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1.3 The rational longitude

Suppose that H1(M ; Q) ∼= Q, as is the case, for example, when considering the com-

plement of a knot in a rational homology sphere. Such manifolds M will be referred

to as knot manifolds. Unless stated otherwise, we will generally make the additional

assumption that a knot manifold M is irreducible. However, this is not an essential

hypothesis in the following discussion, or in the proof of Lemma 1.5 below.

Let i : ∂M ↪→ M be the inclusion map, inducing a homomorphism

i∗ : H1(∂M ; Q) → H1(M ; Q).

Omitting the coefficients for brevity, consider the long exact sequence

· · · // H2(M) // H2(M,∂M) // H1(∂M)
i∗ // H1(M) // H1(M,∂M) // · · ·

Since ∂M is connected, the inclusion i induces an isomorphism H0(∂M) ∼= H0(M).

Similarly, since we are working over a field, applying duality H3(M,∂M) ∼= H0(M) ∼=

H3(M) results in an isomorphism H3(M,∂M) ∼= H2(∂M). Therefore, the sequence

simplifies to yield

0 // H2(M) // H2(M,∂M) // H1(∂M)
i∗ // H1(M) // H1(M,∂M) // 0

Since we are working over a field, by duality we have

H2(M) ∼= H1(M,∂M) ∼= H1(M,∂M)

and

H2(M,∂M) ∼= H1(M) ∼= H1(M)

hence

0 // H1(M,∂M) // H1(M) // H1(∂M)
i∗ // H1(M) // H1(M,∂M) // 0
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Now we observe that rk(i∗) = 1. Indeed,

rk(i∗) = b1(∂M)− ker(i∗)

= b1(∂M)− b1(M) + b1(M,∂M)

and

rk(i∗) = b1(M)− b1(M,∂M)

by exactness. As a result, b1(∂M) = 2 (b1(M)− b1(M,∂M)). Now since b1(∂M) = 2,

we conclude that rk(i∗) = 1.

Notice that this implies that i∗ : H1(∂M ; Z) → H1(M ; Z) carries a free summand of

H1(∂M ; Z) ∼= Z⊕Z injectively to H1(M ; Z) ∼= Z⊕H (for some finite abelian group H).

Moreover, as the image of a free summand of H2(M,∂M ; Z), ker(i∗) must be generated

by kλM , for some primitive class λM ∈ H1(∂M ; Z), and non-zero integer k.

Note that this class is uniquely defined, up to sign, and hence determines a well-defined

slope in ∂M . This gives a canonical slope in ∂M for any knot manifold, and in turn

motivates the following definition.

Definition 1.4. For any knot manifold M , the rational longitude λM is the unique

slope with the property that i∗(λM ) is finite order in H1(M ; Z).

More geometrically, the rational longitude λM is characterized among all slopes by the

property that a non-zero, finite number of like-oriented parallel copies of λM bounds an

essential surface in M .

1.4 A key lemma

As with the canonical longitude for a knot in S3, the rational longitude controls the

first homology of the manifold obtained by Dehn filling.

Lemma 1.5. For every knot manifold M there is a constant cM (depending only on
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M) such that

|H1(M(α); Z)| = cM∆(α, λM ).

Proof. Orient λM and fix a curve µ dual to λM so that µ·λM = 1. This provides a choice

of basis (µ, λM ) for the group H1(∂M ; Z) ∼= Z⊕Z. Under the homomorphism induced by

inclusion we have i∗(µ) = (`, u) and i∗(λM ) = (0, h) as elements of H1(M ; Z) ∼= Z⊕H.

Note that for any other choice of class µ′ such that µ′ · λM = 1 we have µ′ = µ + nλM

so that i∗(µ′) = (`, u + nh).

We claim that |`| = ordH i∗(λM ).

Let ζ generate a free summand of H1(M ; Z) so that (the free part of) the image of µ

is `ζ where i∗(µ) = (`, u) ∈ Z ⊕H, and let η generate the free part of H2(M,∂M ; Z).

Then η · ζ = ±1 under the intersection pairing H2(M,∂M ; Z)⊗H1(M ; Z) → Z.

Now suppose kh = 0 where k = ordH i∗(λM ) so that the class kλM bounds a surface in

M . The long exact sequence in homology gives

· · · // H2(M ; Z) // H2(M,∂M ; Z) ∂ // H1(∂M ; Z)
i∗ // H1(M ; Z) // · · ·

θ
� // kλM

� // 0

so there is a class θ ∈ H2(M,∂M ; Z) with image kλM . Now we have already observed

in defining λM that rk(i∗) = 1, and hence θ = aη for some integer a 6= 0. Therefore

kλM = a∂η, hence ∂η = k
aλM . But since i∗(k

aλM ) = 0, it must be that |ka | = |k| so

that |a| = 1. As a result, θ = ±η. In particular, up to a choice of sign ∂η = kλM as an

element of H1(∂M ; Z). Now

|k| = |µ · kλM | = |µ · ∂η| = |`ζ · η| = |`|

as claimed.
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For a given slope α write α = aµ + bλM so that i∗(α) = (a`, au + bh). Then

H1(M(α); Z) ∼= H1(M ; Z)/(a`, au + bh)

has presentation matrix of the form

 a` 0

au + bh Ir


where r = (r1, . . . , rn) specifies the finite abelian group H = Z/r1Z ⊕ · · · ⊕ Z/rnZ.

Therefore |H1(M(α); Z)| = a`r1 · · · rn. Setting

cM = `r1 · · · rn = (ordH i∗(λM ))|H|

and noting that a = ∆(α, λM ) proves the lemma.

1.5 Heegaard decompositions

A Heegaard decomposition is a decomposition of a 3-manifold along an orientable surface

bounding a pair of handlebodies. Such a decomposition exists for any 3-manifold by

considering a tubular neighbourhood of the 1-skeleton of a triangulation (Rolfsen, 1976,

Chapter 9).

Since our interest, ultimately, will be the role of such decompositions in Heegaard-Floer

homology, it is most natural to approach these from the point of view of Morse theory

(Milnor, 1963). As such, we follow Ozsváth and Szabó (Ozsváth and Szabó, 2004d) (see

also (Ozsváth and Szabó, 2006a, Section 3)).

Fix a Riemannian metric on a closed, connected, orientable 3-manifold Y .

Definition 1.6. A continuous function on a 3-manifold f : Y → R is called Morse if

all of its critical points are non-degenerate. A Morse function is called self-indexing if

for every critical point p we have that f(p) = index(p). Notice that for a self indexing
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Morse function then, we have f : M → [0, 3].

Proposition 1.7. (Milnor, 1963, Section 6) Every 3-manifold admits a self-indexing

Morse function. Further, for a closed, connected, orientable 3-manifold Y there is a

self-indexing Morse function with a single absolute maximum (critical point of index 3)

and a single absolute minimum (critical point of index 0).

Remark 1.8. The seminal advance of Morse theory is that the Morse function provides

a cellular decomposition of the manifold. As a result, the Morse function may be used to

compute the homology of the manifold. With this observation in hand (and the material

of (Milnor, 1963) understood), a cellular decomposition of M consisting of a single 0-cell

and a single 3-cell corresponds to a Morse function of the desired form.

Now since the Euler characteristic of a closed 3-manifold is zero, there must be the same

number of index 2 critical points as index 1 critical points. Furthermore, the level set

f−1(3
2) is a surface of genus g (given by the size of either of these two sets). The surface

Σg = f−1(3
2) then, gives a combinatorial description of the 3-manifold if we record the

intersections of flow lines of −∇(f) emanating from the index 2 and 1 critical points.

That is, the data (Σg,α,β), where α = {αi}g
i=1 and β = {βi}g

i=1 are two g-tuples of

mutually non-intersecting, essential, simple, closed curves in Σg, specifies a 3-manifold

uniquely: the αi specify the 1-handle attachments and the βi specify the two-handle

attachments.

Definition 1.9. A Heegaard diagram is a triple (Σg,α,β) consisting of an orientable

surface of genus g, and two g-tuples of mutually non-intersecting, essential, simple,

closed curves in Σg.

Notice that, by the existence of a self-indexing Morse function on any 3-manifold, we

have that every manifold admits a Heegaard decomposition (c.f. (Ozsváth and Szabó,

2006a, Lemma 3.7)), and that any Heegaard diagram uniquely determines a 3-manifold.

In fact, the Heegaard diagram encodes the homology of the manifold as follows:

H1(M ; Z) ∼=
H1(Σg; Z)

[α1], . . . , [αg], [β1], . . . , [βg]
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However, by nature of the construction a given 3-manifold may admit many seemingly

distinct Heegaard diagrams. It is a result originally due to Singer (Singer, 1933) that

any two such diagrams are related by some finite sequence of the following three moves:

• isotopy: any αi may be replaced by an isotopic α′i. Similarly for the βi.

• handleslides: any αi may be replaced by an α′i with the property that there is a

triple (αi, α
′
i, αj), disjoint from the remaining αk, bounding a pair of pants in Σg.

Similarly for the βi.

• stabilization/destabilization: the genus of the Heegaard surface may be in-

creased by taking Σg+1 = Σg#T , disjoint from α and β, replacing α by α∪αg+1

and β by β ∪ βg+1 where αg+1, βg+1 ⊂ T intersect in a single point. In a similar

manner, we may reduce the genus of the Heegaard surface.

For example, both diagrams in Figure 1.1 give a description of S3. The genus one

description corresponds to a Morse function with a single critical point of each index.

Figure 1.1 The standard genus one decomposition of S3 (left), and a genus two de-
composition resulting from a stabilization, followed by a handleslide (right).

While S3 is characterized as the only manifold admitting a genus 0 Heegaard decompo-

sition (S2, ∅, ∅), lens spaces2 are characterized as those manifolds admitting Heegaard

diagrams of genus 1.

Of course, a neighbourhood of the trivial knot decomposes S3 into two handlebodies of

2Including S2 × S1, although we will generally take the viewpoint that this manifold is not a
lens space.
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genus 1. In the interest of fixing our conventions, we conclude this section by comparing

the surgery description of these lens spaces, and their Heegaard decompositions.

Consider the standard genus 1 splitting of S3 given in Figure 1.1. There is a single α

curve (in red) and a single β curve (in blue). Considering S3 ∼= R∪ {∞}, let the trivial

knot U be the z-axis together with the point at infinity. Then the solid torus enclosed

by the torus depicted in Figure 1.1 is the the complement of U , and α coincides with

the longitude λ (note that α bounds an essential disk). The β curve coincides with the

meridian µ of the trivial knot U .

Now the lens space L(n, 1) is given by S3
n(U), so the corresponding Heegaard diagram

for this manifold is

(S1 × S1, α = λ, β = nµ + λ).

More generally S3
p/q(U) admits the splitting

(S1 × S1, α = λ, β = pµ + qλ).

Remark 1.10. Our convention that µ ·λ = 1 in S1×S1 corresponds to the convention

that µ · λ = −1 when ∂M is oriented as the boundary of M .

1.6 Cyclic branched covers

Another natural way in which knots and links arise in the study of 3-manifolds is as the

fixed point set of a finite group action. That is, given a closed, connected, orientable

3-manifold Y , together with a faithful action by diffeomorphisms Z/pZ×Y → Y having

1-dimensional fixed point set, the quotient of Y by the action has the structure of an

orbifold. In other words, Y may be viewed as a p-fold cyclic branched cover, branched

over some link (specified by the image of the fixed point set of the action in the quotient

– the orbifold curve).

Such manifolds may be constructed readily, given a knot in S3. Let M = S3rν(K), then

following (Rolfsen, 1976, Chapter 10), any surjective homomorphism π1(M) → Z/pZ
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must factor through the abelianization H1(M ; Z) ∼= Z. As a result, the following triangle

commutes

µp � // 0

π1(M) //

##GG
GG

GG
Z/pZ

〈µ〉

<<yyyyyy

where µ is the meridian of K, resulting in a short exact sequence

1 // Γ // π1(M) // Z/pZ // 1

Consider the corresponding p-fold cyclic cover M̃ → M with π1(M̃) = Γ.

There is a p-fold cyclic branched cover of the disk D2 = {z ∈ C : |z| ≤ 1} by itself

specified by f(z) = zp. This extends in an obvious way to a p-fold cyclic branched cover

D2 × S1 → D2 × S1, branched over the core {0} × S1 of the solid torus. Here, the core

{0}×S1 becomes a singular set of cone index p associated to the p-fold cyclic branched

cover (viewed as an orbifold). This extension agrees, on the boundary, with the action

of Z/pZ restricted to ∂M̃ . With this observation in hand, Y = M̃ ∪ (D2 × S1) gives a

p-fold cyclic branched cover of S3, branched over the knot K. By construction π1(Y ) is

an index p subgroup of the orbifold fundamental group πorb
1 (S3,K), an object sensitive

to the cone index of the singular set K. More precisely, there is a short exact sequence

1 // π1(Y ) // πorb
1 (S3,K) // Z/pZ // 1

µ � // µp

Our interest will be in two-fold branched covers, corresponding to manifolds with invo-

lution. To this end we introduce the notation Σ(S3, L) for the two-fold branched cover

of S3 branched over a link L.3 In keeping with the discussion above, this notation spec-

3More generally, Σ(Y, X) will denote the two-fold branched cover of Y branched over X ↪→ Y ,
whenever this cover makes sense. Thus, from the present discussion, D2 ∼= Σ(D2, {0}) and D2 × S1 ∼=
Σ(D2 × S1, {0} × S1).
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ifies the singular set L, of cone index 2, when the two-fold branched cover is considered

as an orbifold.

Definition 1.11. A knot manifold is called strongly invertible if there is an involution

f : M → M with 1-dimensional fixed point set intersecting the boundary torus transver-

sally in exactly 4 points. A knot is called strongly invertible if its complement is strongly

invertible.

The solid torus is strongly invertible, and by an observation attributed to Montesinos,4

a strong inversion on M extends to an involution on M(α), for any slope α in ∂M

(Montesinos, 1975). This gives a useful relationship between Dehn fillings and two-fold

branched covers (c.f. Chapter 4).

Proposition 1.12. (Montesinos, 1975) For any strongly invertible knot manifold M

and slope α in ∂M , the result of Dehn filling gives rise to a two-fold branched cover

M(α) ∼= Σ(Y, L), for some link L ↪→ Y , where Y is the quotient of M(α) by a unique

extension of the strong inversion.

Certain classes of 3-manifolds have a particularly strong correlation with possible branch

sets as two-fold branched covers of S3. For example, the Smith conjecture (resolved in

the Z/2Z setting by Waldhausen (Waldhausen, 1969)) states that S3 ∼= Σ(S3, L) if and

only if L is the trivial knot. More generally, we have:

Theorem 1.13. (Hodgson and Rubinstein, 1985) A two-fold branched cover Σ(S3, L)

is a lens space if and only if L is a non-split two-bridge link.

In a similar vein, work of Boileau and Otal (Boileau and Otal, 1991) gives the following

consequence of the orbifold theorem (Thurston, 1982):

Theorem 1.14. (Boileau and Otal, 1991, Affirmation 2.5) If a two-fold branched

Σ(S3, L) has finite fundamental group, then the branch set L ↪→ S3 is unique up to

isotopy.

4Often colloquially referred to as the Montesinos trick.
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In fact, it turns out that every manifold with finite fundamental group arises in this

way (see Proposition 1.16 and Remark 1.17).

Example: The Poincaré homology sphere may be viewed as the two-fold branched cover

Σ(S3,K) where K is the knot 10124 of Rolfsen’s tables (Rolfsen, 1976). This knot turns

out to be isotopic to the (3, 5)-torus knot, as well as isotopic to the (−2, 3, 5)-pretzel

knot. Of course, this manifold has finite fundamental group the binary icosahedral

group, so this observation is consistent with Theorem 1.14.

1.7 Seifert fibered spaces

We now describe a class of manifolds that will play an important role in this work. These

were considered by Seifert (Seifert, 1933) and later by Raymond (Raymond, 1968); more

details are given in (Boyer, 2002, Section 5.1) and the references therein. In general,

the approach taken here follows (Scott, 1983).

A Seifert fibre structure on a 3-manifold M is a foliation by circles. A particular instance

of such a structure is given by circle bundles over a surface. Thus, our first example

is provided by the solid torus D2 × S1. In fact, this manifold admits infinitely many

Seifert fibre structures, as follows. Given a pair of relatively prime integers (p, q) with

p ≥ 1, define

Vp,q = (D2 × I)/{(x, 1) = (e2πi q
p x, 0)}.

Notice that this describes a foliation by circles induced from the intervals I in the

quotient. This is simply a standard solid torus to which a p
q -twist has been added.

The result is homeomorphic to D2 × S1, however the resulting circle foliation is non-

standard: the core circle {0} × S1 ⊂ D2 × S1 is a singular fibre of order p whenever

p > 1. We take this as the definition of a singular fibre, in general. Work of Epstein

shows that every fibered solid torus is fibre-preserving diffeomorphic to one of these

standard Seifert fibrations (Epstein, 1972).

Definition 1.15. A Seifert fibre structure on a 3-manifold M is a foliation by circles
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(called fibres), such that the tubular neighbourhood of any fibre is fibre-preserving dif-

feomorphic to one of the standard Vp,q described above. The index p ≥ 1 of the fibered

solid torus is the index of the fibre; the fibre is singular (or exceptional) whenever p > 1,

and regular otherwise. A manifold with a fixed Seifert structure will be referred to as a

Seifert fibre space.

The orbit space of a given Seifert fibre space M is an orbifold B, with underlying

manifold given by a surface B. The collection of singular fibres of M correspond to a

finite collection of cone points in the interior of B, thus we denote B = B(p1, p2, . . . , pn).

Thus, for a standard fibered solid torus Vp,q we have that B = D2(p). Notice that the

fibres can always be given a coherent orientation locally, but need not admit a global

orientation coherent with an orientation on the manifold.

As an example, the Hopf fibration of S3 demonstrates that this manifold may be viewed

as a Seifert fibration. However, the three sphere admits many distinct Seifert structures:

one for every torus knot. Consider the genus 1 decomposition of S3 of Figure 1.1. Then

every relatively prime pair (p, q) determines an essential simple closed curve on the

torus, or a torus knot when included in S3. This is a regular fibre in a Seifert fibration

with base orbifold S2(p, q).

The geometry of a closed manifold admitting a Seifert fibration is completely determined

by two quantities: the Euler number of the total space and the orbifold characteristic of

the base (Scott, 1983, Table 4.1). Thus, for example, we have the following classification:

Proposition 1.16. (Scott, 1983) A Seifert fibered manifold with finite fundamental

group has base orbifold S2(p, q, r). If p, q, r > 1 then these fall into two classes: either

S2(2, 2, n) for any n > 1 or S2(2, 3, n) for n = 3, 4, 5.

Remark 1.17. Perelman’s proof of the geometrization conjecture (Perelman, 2002;

Perelman, 2003), carried out in detail by Morgan and Tian (Morgan and Tian, 2007;

Morgan and Tian, 2008), implies that the Seifert fibered spaces of Proposition 1.16

entail a complete list of manifolds with finite fundamental group. However, in the case
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when the manifold in question admits a cyclic group action with non-empty fixed point

set – as in the case for cyclic branched covers of S3, in particular – the same may be

deduced by avoiding the work of Perelman and applying the orbifold theorem (Thurston,

1982), to obtain a positive resolution to the geometrization conjecture in the presence of

a cyclic group action with non-empty fixed point set (see (Boileau and Porti, 2001), and

more generally (Boileau et al., 2005) removing the restriction to cyclic group actions).

While the present work will make use of this latter fact (see in particular Theorem

4.25 and Remark 4.26), we will endeavour to be explicit when questions pertaining to

geometrization arise.

There is a short exact sequence

1 // K // π1(M) // πorb
1 (B) // 1

where K < π1(M) is a cyclic group generated by a regular fibre ϕ (c.f. (Scott,

1983, Lemma 3.2)). As a result, since π1(B) (and hence H1(B; Z)) is a quotient of

πorb
i (B) = π1(M)/〈〈ϕ〉〉, there are strong restrictions on the underlying surface B of the

base orbifold B whenever H1(M ; Q) = 0. Indeed, since surjectivity is preserved under

abelianization, the surjection π1(M) → π1(B) gives a surjection H1(M ; Z) → H1(B; Z).

Now if H1(M ; Z) is finite, H1(B; Z) must be finite as well so that B is either D2, S2 or

RP 2.

Example: Revisiting our running example of the Poincaré homology sphere, this man-

ifold admits a Seifert fibration with base orbifold S2(2, 3, 5). This can be seen from the

fact that this manifold is a two-fold branched cover Σ(S3,K) where K is the (−2, 3, 5)-

pretzel knot (Montesinos, 1976) (see also (Boileau and Otal, 1991)). Of course, this

knot is isotopic to the (3, 5)-torus knot, and viewed in this way (see (Seifert, 1933, Page

222)) Σ(S3,K) is a Brieskorn sphere, that is, the intersection of the unit 5-sphere with

the complex surface

x2 + y3 + z5 = 0
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in C3 (Brieskorn, 1966b; Brieskorn, 1966a) (see (Saveliev, 1999) for a discussion of these

notions more closely related to the present work).

Brieskorn spheres provide a nice family of Seifert fibre spaces that branch cover S3.

Proposition 1.18. (Milnor, 1975, Lemma 1.1) The Brieskorn sphere resulting from

the intersection of S5 with the complex surface

x2 + yp + zq = 0

in C3 for odd, relatively prime (p, q) is homeomorphic to Σ(S3,K) where K is the

(p,q)-torus knot.

Proposition 1.19. (Seifert, 1933, Zusatz zu Satz 17) Let K be the (p, q)-torus knot,

for p, q odd and relatively prime. Then the two-fold branched cover Σ(S3,K) admits a

unique Seifert fibered structure with base orbifold S2(2, p, q).

Remark 1.20. Though the Seifert structure on this family of manifolds is unique, the

involution need not be. In general, if such a manifold has infinite fundamental group, it

may be realized as the two-fold branched cover of S3 in two different ways (Montesinos,

1976).

We now turn to Dehn surgery on Seifert fibered manifolds. This was studied by Moser

(Moser, 1971) in the case of surgery on torus knots in S3, and subsequently generalized

by Heil (Heil, 1974) (see also (Boyer, 2002, Theorem 5.1)).

Theorem 1.21. (Heil, 1974) Let M be a Seifert fibered knot manifold, with base orbifold

B of the form B(p1, p2, . . . , pn), where ∂B = S1. Let ϕ be the slope in ∂M corresponding

to a regular fibre of M . Then for any filling M(α), for which α 6= ϕ, the Seifert fibration

extends and the resulting closed manifold has base orbifold

B ∪∂B=∂D2 D2 (∆(α, ϕ)) .
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On the other hand,

M(ϕ) ∼=
(
#n

i=1L(pi, qi)
)
#
(
#m

j=1S
2 × S1

)
where the ith fibre is of type (pi, qi) and m is the twice the genus of B when B is

orientable, or the number of RP 2 factors otherwise.

Lens spaces provide a large class of Seifert fibered manifolds; this is now a quick ap-

plication of the Heil’s result. The base orbifold for the lens space S3
p/q(U) ∼= L(p, q)

is S2(p, q) = D2(p) ∪ D2(q) (or if p
q = 0 we obtain S2 × S1). In other words, for the

standard Heegaard decomposition of L(p, q), each solid torus may be fibered with base

orbifold D2(p) and D2(q) respectively. Note that, due to the nature of this construction

and the definition of the Vp,q, the resulting Seifert structure on a given lens space is

highly non-unique.

As we have seen in Lemma 1.5, a Dehn filling is controlled by the rational longitude.

However, as in the Theorem 1.21, Seifert fibrations come with a natural choice of slope

given by a regular fibre in the boundary. We end this section with a curious collection

of examples on which these slopes coincide.

Proposition 1.22. Let ϕ be a regular fibre in a Seifert fibration on Y over RP 2, and

set M = Y r ν(ϕ). Then the rational longitude coincides with a regular fibre as slopes

in ∂M .

Proof. Recall that the rational longitude λM is characterized by the following property:

some number of parallel copies of λM bounds an essential surface in M . Thus, it suffices

to show that a regular fibre enjoys this property, and to this end we claim that the class

2ϕ ∈ H1(∂M ; Z) bounds an essential annulus in M .
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c

∂A

To see this, first note that M has base orbifold B = B(p1, p2, . . . , pn)

where B = (I × I)/{(0, x) = (1, 1 − x)} is a Möbius strip. Consider

the curve {1
2} × I meeting the boundary in two points. This curve

is covered by an annulus A ↪→ M where ∂A = ϕ t ϕ ⊂ ∂M . Notice

that this embedding of A has orientation coherent with the orientation on A, since the

fibres above a neighbourhood of the curve {1
2} × I may be coherently oriented.

It remains to see that this surface A is essential, and to this end notice that c = I×{1
2},

as a curve in M , meets A transversely in a single point. As a result, since H1(M ; Z) ∼=

H2(M,∂M ; Z) we have the pairing

〈−,−〉 : H1(M ; Z)×H2(M,∂M ; Z) → Z

for which 〈[c], [A]〉 6= 0.

Notice that a fibration (without singular fibres) over the Möbius strip may be viewed

as the twisted I-bundle over the Klein bottle, K×̃I. This I-bundle with base space K

is unique (Milnor and Stasheff, 1974), though it admits a second Seifert fibration with

base orbifold D2(2, 2). It follows that a Seifert fibration with base orbifold S2(2, 2, n)

also admits a Seifert structure over RP 2(m) (for some m). However, such phenomena

are the exception, not the rule.

Theorem 1.23. (Scott, 1983, Theorem 3.9) If Y is a Seifert fibered rational homology

sphere with infinite fundamental group, then the Seifert structure is unique.

1.8 The exceptional surgery problem

To this point, we have discussed essentially combinatorial aspects of 3-manifolds. Our

interest however is in questions pertaining to the geometries that arise after Dehn fill-

ing. We have seen that, in the case when a manifold admits a Seifert structure, the

resulting Dehn fillings are easily understood (as Seifert spaces, c.f. Theorem 1.21), and

subsequently the geometry is characterized (Scott, 1983).
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In his pioneering work on the geometry and topology of 3-manifolds, Thurston showed

that a hyperbolic manifold M with torus boundary admits a finite number of exceptional

fillings (Thurston, 1980; Thurston, 1982). That is, those closed manifolds obtained from

M by Dehn filling that are non-hyperbolic. Since then, the question of understanding

and classifying exceptional surgeries has received considerable attention (see survey pa-

pers (Gordon, 1991) and (Boyer, 2002)). What has come to be known as the exceptional

surgery problem may be stated as follows:

Question 1.24. Given a hyperbolic 3-manifold M with torus boundary, for which slopes

α is M(α) non-hyperbolic?

Of course, this question may be refined in various ways by asking, for example, when

particular geometries arise, or when a particular class of manifolds arises.

Perhaps the simplest non-hyperbolic manifold is a lens space. Restricting to comple-

ments of knots in S3, Moser (Moser, 1971) showed that torus knots always admit lens

space surgeries, and went as far as to conjecture that this was the only way to obtain

a lens space by surgery on S3. Subsequently, Bailey and Rolfsen (Bailey and Rolfsen,

1977) constructed an example of a lens space surgery on a non-torus knot (a particular

cable of the trefoil),5 and Fintushel and Stern (Fintushel and Stern, 1980) obtained

further examples including hyperbolic knots that admit lens space surgeries.

In a now famous, unpublished note, Berge gives a list of knots in S3 that admit lens

space surgeries (Berge, 1987). These knots are referred to as Berge knots, and it has

since been conjectured that this list is complete. That is, if a knot in S3 admits a

lens space surgery then it must be a Berge knot; this has become known as the Berge

conjecture.

In this vein, perhaps the most celebrated result pertaining to the exceptional surgery

problem is the cyclic surgery theorem due to Culler, Gordon, Luecke and Shalen:

5Bailey and Rolfsen’s article provides an excellent, concise account of Kirby (sometimes referred
to as Kirby-Rolfsen) surgery calculus.
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Theorem 1.25. (Culler et al., 1987) Let M be a hyperbolic knot manifold and suppose

M(α) and M(β) have cyclic fundamental group. Then ∆(α, β) ≤ 1.

In particular, this implies that any surgery on S3 that yields a lens space must be an

integer surgery. Further progress towards the Berge conjecture has come, more recently,

from applications of Heegaard-Floer homology (Ozsváth and Szabó, 2005b; Rasmussen,

2004b). In fact, there is a active program towards solving the Berge conjecture that

has resulted in a completely Heegaard-Floer theoretic version of the conjecture (Baker

et al., 2007; Hedden, 2007; Rasmussen, 2007), suggesting that a positive resolution may

be possible by way of Heegaard-Floer homology.

Enlarging our class of interest slightly, one might ask instead if a manifold with finite

fundamental group can arise as a result of Dehn filling on M . We refer to such a filling

as a finite filling. This has been treated in depth by Boyer and Zhang, proving the

following results analogous to the cyclic surgery theorem, by developing and expanding

the machinery and techniques from the proof of Theorem 1.25:

Theorem 1.26. (Boyer and Zhang, 1996) Let M be a hyperbolic knot manifold. Then if

M(α) has finite fundamental group, and M(β) has cyclic fundamental group, ∆(α, β) ≤

2.

Theorem 1.27. (Boyer and Zhang, 2001) Let M be a hyperbolic knot manifold. Then

if both M(α) and M(β) have finite fundamental group, ∆(α, β) ≤ 3.

One may proceed in this way, next asking for obstructions to Seifert fibre spaces with

base orbifold S2(p, q, r). Such 3-manifolds are referred to as small Seifert fibered spaces.

While this is far from a complete treatment of the exceptional surgery question, we

pause here to ask the central question of this thesis: can Khovanov homology provide

obstructions to exceptional surgeries?



CHAPTER II

KHOVANOV HOMOLOGY

We give a detailed overview of the definition of Khovanov homology (Khovanov, 2000).

This has been treated in depth in the literature, and for this reason our introduction is

streamlined and tailored to the present purposes. In particular, the proof of invariance

will be omitted. We refer the reader to Khovanov’s original paper (Khovanov, 2000),

as well as (Bar-Natan, 2002; Bar-Natan, 2005). There is also an excellent survey by

Rasmussen (Rasmussen, 2005), as well as a very detailed set of notes by Turner from a

summer school in Marseille (Turner, 2006).

2.1 Khovanov’s construction
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The Khovanov complex of an

oriented link L is generated by

first considering an n-crossing

diagram for L together with

2n states, each of which is a

collection of disjoint simple clo-

sed curves in the plane. Each

state s is obtained from a choice

of resolution (the 0-resolu-

tion) or (the 1-resolution)

for every crossing (notice
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that for a crossing the 0- and 1-resolutions exchange roles). As a result, by fix-

ing an order on the crossings, each state s may be represented by an n-tuple with

entries in {0, 1} so that the states are in bijection with the vertices of the n-cube [0, 1]n.

This is referred to as the cube of resolutions for L. Let |s| denote the height of the state

s, given by the sum of the entries of the n-tuple associated to s.

Let V be a free, graded Z-module generated by v− and v+, where deg(v±) = ±1. To

each state s we associate V ⊗`s where `s > 0 is the number of closed curves in the given

state. Set

Cu(L) =
⊕
u=|s|

V ⊗`s [0, |s|].

Here, the operator [·, ·] shifts the bigrading as follows. Note that we have defined a

bigraded group

C(L) =
⊕

u

Cu(L) =
⊕
u,q

W u
q

for some finite collection of groups W u
q where u is the homological (or primary) grading

and q denotes the Jones (or secondary) grading. Now the shift operator1 affects these

gradings by

(W [i, j])u
q = W u−i

q−j .

With this notation in hand, the chain groups of the Khovanov complex are defined as

CKhu
q (L) = (C(L)[−n−, n+ − 2n−])u

q = Cu+n−
q−n++2n−

(L)

where n+ = n+(L) is the number of positive crossings in L and n− = n−(L) is the

number of negative crossings in L.

The differentials ∂u : CKhu(L) → CKhu+1(L) come from a signed sum over the col-

lection of edges in the cube of resolutions moving from height u to height u + 1. The

1It can be easily verified that this operation corresponds to multiplication in the Poincaré poly-
nomial recording the graded dimensions of these groups. Thus, V ⊗n has Poincaré polynomial (q−1+q)n,
where the monomial mqr denotes that the dimension of the group in q-grading r is m.
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operations on each edge correspond to multiplication and comultiplication in a partic-

ular Frobenius algebra defined over V .

Notice that each edge in the cube of resolutions connects a pair of states s and s′ that

differ in precisely one entry. That is, if |s′| = |s| + 1 then as elements of {0, 1}n these

states are of the form (ε1, ε2, . . . , εk, . . . , εn) where εk = 0 for the state s and εk = 1

for the state s′ (the remaining εi are identical). Geometrically, this corresponds to the

local change → (or → ), leaving the rest of the state unaltered. Therefore,

each edge corresponds to either merging two circles of the state s into one to obtain s′,

or splitting a single circle of s in two to obtain s′.

Such operations correspond to simple operations in a cobordism category C with objects

given by collections of circles (the states) and arrows given by surfaces. This is a

monoidal category (C,t, ∅), and defining a compatible Frobenius algebra amounts to

choosing a monoidal functor (i.e. a functor respecting the monoidal structures) to the

monoidal category of Z-modules, (ModZ,⊗, Z). Such a functor is called a TQFT: a

topological quantum field theory (Kock, 2004). More precisely, there is an equivalence

between isomorphism classes of finite dimensional commutative Frobenius algebras, and

isomorphism classes of TQFTs.

We now make the desired Frobenius algebra precise. To each edge of the cube of

resolutions we assign the multiplication

m

m : V ⊗ V −→ V

v−⊗ v− 7−→ 0

v+⊗ v− 7−→ v−

v−⊗ v+ 7−→ v−

v+⊗ v+ 7−→ v+
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whenever the edge s → s′ merges two circles, and we assign the comultiplication

∆

∆: V −→ V ⊗ V

v− 7−→ v−⊗ v−

v+ 7−→ v−⊗ v+ + v+⊗ v−

whenever the edge s → s′ splits a single circle.2 Notice that v+ is the unit for multipli-

cation, and that each of m and ∆ lower degree (the secondary grading) by 1. However,

as operations in the cube of resolutions these are grading preserving in q since we have

compensated in the definition if C(L) by shifting in the height [0, |s|].

As a result, viewed as a commutative diagram in the cobordism category C, the cube

of resolutions has the property that every 2-dimensional face commutes. To obtain a

chain complex then, it suffices to fix a sign convention on the edges so that every 2-

dimensional face anti-commutes. In fact, any consistent choice will do, and one such

choice is obtained by

sign =


+ if

k−1∑
i=1

εi ≡ 0 (mod 2)

− if
k−1∑
i=1

εi ≡ 1 (mod 2)

where s = (ε1, ε2, . . . , εk, . . . , εn) and εk is the entry changing from 0 to 1 as before. Let

∂u
i be the operation (with appropriate sign) on the ith edge moving from height u to

height u + 1. Then the differential is defined as

∂u =
∑

∂u
i

by summing over all edges at the prescribed height. By construction, (CKhu(L), ∂u)

forms a chain complex.

2In fact, the Frobenius algebra (and in particular, the comultiplication) is determined by the
multiplication and a counit ι : V → Z defined by ι(v+) = 0 and ι(v−) = 1. Though we will not make
use of this part of the structure, it is a good check to verify that under this Frobenius algebra the torus

evaluates to the map Z ×2−→ Z, by observing that v+ is the unit for multiplication.
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Figure 2.1 The Khovanov homology of the trefoil. The homological grading (u) is read
horizontally, and the secondary grading (q) is read vertically. F denotes the cyclic group
Z/2Z.

Definition 2.1. The Khovanov homology Kh(L) is given by the homology of the complex

(CKhu(L), ∂u).

Notice that, as defined, Kh(L) is a bigraded cohomology theory. However, we will

continue to refer to Khovanov homology, as has become common in the literature.

Theorem 2.2. (Khovanov, 2000) Kh(L) is an invariant of the link L, with the property

that

V̂L(a) =
∑

u,q
(−1)uaq dim(Khu

q (L)⊗Q)

where V̂L(a) is the unnormalized Jones polynomial, with V̂U (a) = a−1 + a for the trivial

knot U .

The proof of the first part of the theorem amounts to showing that the groups Kh(L)

do not depend on the choices made in the construction of (CKhu(L), ∂u), notably, the

choice of ordering on the crossings, the sign conventions, and the diagram for the link.

In particular, invariance under the three Reidemeister moves3 must be verified, and this

is done in (Khovanov, 2000). A quick proof (working over Q) is given in (Bar-Natan,

2002), and a geometric proof of invariance (of a more general invariant) is given in

(Bar-Natan, 2005). A sketch of the proof that blends the two approaches can be found

3There are 3 unoriented Reidemeister moves; more when equivalence of oriented diagrams is
considered.
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in (Turner, 2006). The second part of the theorem, pertaining to the Jones polynomial

(Jones, 1985), is immediate from the definition of CKh(L): the Kauffman bracket may

be easily recovered from the construction of the cube of resolutions as a graded Euler

characteristic of C(L).

While an absolute Z ⊕ Z-grading is a function from homogeneous elements of the ho-

mology to Z⊕Z, a relative Z⊕Z-grading is a similar function taking values in the affine

space over Z⊕Z. That is, only the difference in grading between homogeneous elements

is well defined.

As an absolutely graded group, Kh(L) is concentrated in odd q-gradings whenever

L has an odd number of components, and even q-gradings otherwise. As a result,

notice that the homology H∗ (C(L)) is an invariant of the link as a relatively Z ⊕ 2Z-

graded group. This is an invariant of the unoriented link L that has the Kauffman

bracket of L as graded Euler characteristic. The Kauffman bracket is an invariant

of the link, up to multiplication by some monomial ak. Thus, the fixed overall shift

in Kh(L) corresponds to adjusting the Kauffman bracket by the writhe to obtain the

Jones polynomial (Kauffman, 1987).

Remark 2.3. Viewed as a relatively Z ⊕ 2Z-graded group, Kh(L) is still a useful in-

variant. In particular, it is an invariant of unoriented links.

Another interesting, basic property of Khovanov homology is that the homology of the

mirror L? of a link L gives the dual of Kh(L) (Khovanov, 2000, Section 7.3) (see also

(Ozsváth and Szabó, 2005c)).

2.2 The skein exact sequence

One of the fundamental tools in Khovanov homology is the skein exact sequence: this is

a long exact sequence that plays the role of the skein relation in the Kauffman bracket

definition of the Jones polynomial. This exact sequence is implicit in Khovanov’s original

work (Khovanov, 2000), but appears in the form given here in (Rasmussen, 2005).
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Given a link L( ) with a distinguished positive crossing, fixing an order on the crossings

so that this distinguished crossing occurs last, there is a subcomplex

C
(
L( )

)
[1, 1] ⊂ C

(
L( )

)
giving rise to a short exact sequence

0 −→ C
(
L( )

)
[1, 1] −→ C

(
L( )

)
−→ C

(
L( )

)
−→ 0.

Since L( ) inherits the orientation of L( ), we set c = n−
(
L( )

)
− n−

(
L( )

)
for

some choice of orientation on the affected strands of L( ) to obtain

0 −→ CKhu−c−1
q−3c−2

(
L( )

)
−→ CKhu

q

(
L( )

)
−→ CKhu

q−1

(
L( )

)
−→ 0.

This short exact sequence gives rise to a long exact sequence

−→ Khu−c−1
q−3c−2

(
L( )

)
−→ Khu

q

(
L( )

)
−→ Khu

q−1

(
L( )

) ∂∗−→ Khu−c
q−3c−2

(
L( )

)
−→

Here, ∂∗ is the map induced on homology from (the component of) the differential

∂ : CKhu
q−1

(
L( )

)
→ CKhu−c

q−3c−2

(
L( )

)
in CKhu

q

(
L( )

)
. This connecting homo-

morphism raises homological degree by one, and preserves the secondary grading.

For example, in the complex for the right-hand trefoil (given in the

previous section) we have circled the distinguished positive crossing

(it is shown on the right). The subcomplex is given by states of the

form (?, ?, 1), and ∂∗ is induced by morphisms that take states of

the form (?, ?, 0) to (?, ?, 1). It is an instructive exercise to calculate that Kh7
3(K) ∼=

Z/2Z for the right hand trefoil K. This results from the fact that the only non-trivial

morphism in this long exact sequence arises for Kh6
2(H)[0, 1] → Kh0

−1(U)[3, 8], where H

is the Hopf link and U is the trivial knot, and turns out to be ×2 : Z → Z (see (Turner,

2006) for more details on this example). Torsion in Khovanov homology is somewhat

mysterious, though it is conjectured that the torsion alone is enough to detect that a



36

knot is non-trivial (Shumakovitch, 2004b).

Similarly, for a link L( ) with a distinguished negative crossing there is a long exact

sequence

−→ Khu
q+1

(
L( )

)
−→ Khu

q

(
L( )

)
−→ Khu−c

q−3c−1

(
L( )

) ∂∗−→ Khu+1
q+1

(
L( )

)
−→

2.3 Reduced Khovanov homology

Given a link L, there is a reduction of the chain complex defined for L•: the link with

a choice of marked arc in a diagram for L (Khovanov, 2003). This depends, in general,

on a choice of marked component, but gives a well defined invariant for knots. We give

two equivalent definitions.

The multiplication m gives rise to an action V ⊗ CKh(L•) → CKh(L•) by stipulating

that a closed component introduced near the marked point merges at that point under

the obvious cobordism. We note that the unit for multiplication acts trivially, and that

the associativity of V ensures that the action is well defined. As a result, CKh(L•) is a

complex of V -modules.

Definition 2.4. The reduced Khovanov homology of L•, denoted K̃h(L•), is given by

the homology of the complex C̃Kh(L•) = CKh(L•)⊗V V
/
(v− · V ).

The reduced Khovanov homology is an invariant of L•, depending in general on the

marked component. As a result, we get a well defined invariant when restricting atten-

tion to knots (i.e. single component links).

There is also a natural way to view this reduction in terms of subcomplexes. The

marking on L• descends to a marking of states s•. Since v+ is the unit for multiplication,

we may form a subcomplex C(L•) ⊂ C(L) as follows:

Cu(L•) =
∑
u=|s|

v− ⊗ V ⊗(`s−1)



37

where the marked circle in the state is always endowed with the element v− ∈ V . That

C(L•) is a subcomplex is immediate from the definition of m and ∆ in the associated

Frobenius algebra. As a result, we may define CKh•(L•) =
⊕

u Cu(L•) to obtain the

short exact sequence

0 −→ CKh•(L•) −→ CKh(L) −→ C̃Kh(L•) −→ 0

where C̃Kh(L•) ∼= CKh(L)/ CKh•(L•) is taken as the definition of the reduced Kho-

vanov complex. Indeed, this is precisely the tensor product (over V ) with the one

dimensional representation V
/
(v− ·V ) given previously. As before, the homology of this

complex is denoted K̃h(L•).

Theorem 2.5. (Khovanov, 2003) K̃h(L•) is an invariant of the marked link L• (and

in particular, gives an invariant for knots) with the property that

VL(t) =
∑

u,q
(−1)ut

q
2 rk(K̃h(L)⊗Q)

where VL(t) is the standard Jones polynomial with normalization VU (t) = 1 for the

trivial knot U .

The short exact sequence for the reduced complex gives rise to a long exact sequence of

the form

−→ K̃h
u
(L•)[0, 1] −→ Khu(L) −→ K̃h

u
(L•)[0,−1] −→ K̃h(L•)u+1[0, 1] −→

since CKh•(L•) ∼= C̃Kh(L•)[0, 2] (see (Rasmussen, 2005)). While this sequence does

not split in general, work of Shumakovitch implies that the connecting homomorphism

is relatively tame.

Theorem 2.6. (Shumakovitch, 2004b) The connecting homomorphism in the long exact

sequence for the reduced complex is congruent to 0 modulo 2.

Thus, working with coefficients in F = Z/2Z we have a split long exact sequence.
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2.4 Coefficients and further conventions

For our purposes, it is not restrictive to work over F = Z/2Z. And indeed, the benefits

are such that we will fix this choice once and for all. As a result, we immediately have

that K̃h(L) is an invariant of unmarked links (i.e. does not depend on the choice of

marked component), and

Kh(L) ∼= K̃h(L)[0,−1]⊕ K̃h(L)[0, 1]

(Shumakovitch, 2004b).

We now fix some conventions for the remainder of this work. Replacing the secondary

grading by q
2 (but preserving the notation q for this rescaling), we define δ = u − q.

Now we consider K̃h(L) as a relatively Z⊕Z-graded homology theory in gradings δ and

q, so that group that until now has been written K̃h
i

j(L) will from now on be denoted

K̃h
δ

q(L) where δ = i− j
2 and q = j

2 .

As a relatively graded group, this homology theory categorifies to the Jones polynomial

in the following sense (c.f. Theorem 2.2 and Theorem 2.5).

Theorem 2.7. Let u = δ+q. Then there is a unique absolute Z⊕ 1
2Z-grading (in (u, q))

on K̃h(L) with the property that

VL(t) =
∑

u,q
(−1)utq rk K̃h

u

q (L),

where VL(t) ∈ Z[t
1
2 , t−

1
2 ] is the Jones polynomial.

Remark 2.8. We remark that the universal coefficient theorem

K̃h
u

q (L; F) ∼= Tor
(
K̃h

u+1

q (L; Z), F
)
⊕ K̃h

u

q (L; Z)⊗ F

together with the fact that

Tor(Z/2nZ, F) = F = Z/2nZ⊗ F
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ensures that rk K̃h(L; F) = rk K̃h(L; Q) + 2`, for some integer ` ≥ 0, and the extra

factors of F cancel in pairs so that the graded Euler characteristic (giving rise to the

Jones polynomial) is invariant of the coefficient field.

Thus, the Jones polynomial arises as an appropriately defined graded Euler characteristic

of the theory. According to our grading conventions, the usual Euler characteristic

χ(K̃h(L)) =
∑

δ
(−1)δ rk K̃h

δ
(L)

is obtained by collapsing the q grading. Note that this is only well defined up to sign

as δ is a relative integer grading; we fix the convention χ ≥ 0.

Proposition 2.9. With the above notation, χ(K̃h(L)) = det(L) (the standard determi-

nant of the link).

Proof.

χ(K̃h(L)) =
∣∣∣∑

δ

(−1)δ rk K̃h
δ
(L)
∣∣∣

=
∣∣∣∑

δ,q

(−1)δ rk K̃h
δ

q(L)
∣∣∣

=
∣∣∣∑

u,q

(−1)u−q rk K̃h
u

q (L)
∣∣∣

=
∣∣∣∑

u,q

(−1)u(−1)−q rk K̃h
u

q (L)
∣∣∣

=
∣∣∣∑

u,q

(−1)u(−1)q rk K̃h
u

q (L)
∣∣∣

= |VL(−1)|

= det(L)
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Figure 2.2 The reduced Khovanov homology of the trefoil (left) with w = 1, and the
knot 10124 (right) with w = 2. The primary relative grading (δ) is read horizontally, and
the secondary relative grading (q) is read vertically. The values at a given bi-grading
give the ranks of the abelian group (or F-vector space) at that location; trivial goups
are left blank.

Forgetting the q-grading in this way, and collecting the δ-gradings, yields

K̃h(L) ∼= Fb1 ⊕ · · · ⊕ Fbk =
⊕k

δ=1 Fbδ

for non-negative integers bi, where b1 and bk are non-zero. As a result, we arrive

naturally at the following:

Definition 2.10. The homological width of L is given by w(L) = k, the number of

δ-gradings supporting the reduced Khovanov homology. Links for which w = 1 are called

thin (or homologically thin), while links with w > 1 are termed thick (or homologically

thick).

Hence, our grading convention gives homological grading by diagonals of slope 2 from

the standard (u, q)-grading related to the Jones polynomial.

Remark 2.11. The homological width is an interesting quantity. It is an invariant of

the link taking values in N that cannot be recovered from the Jones polynomial. Bar-

Natan’s calculation of Kh(K) for knots with up to 11 crossings (Bar-Natan, 2002) first

suggested that the quantity is of interest (see also (Khovanov, 2003; Shumakovitch,

2004b)), and his conjecture that w(L) = 1 for non-split alternating links was subse-

quently proved by Lee (Lee, 2005). Of course, these are not the only homologically thin

links. In general the quantity w(L) seems mysterious, and worthy of study as a result.
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With this notation in hand,

χ
(
K̃h(L)

)
=
∣∣∣ k∑

i=δ

(−1)δbδ

∣∣∣
and

rk K̃h(L) =
k∑

δ=1

bδ,

giving rise to a first example of homologically thick links.

Proposition 2.12. Any link L with det(L) = 0 must have w(L) > 1.

Proof. Since VL(t) is a non-zero polynomial4 it follows that rk K̃h(L) > 0 for all links L,

and in particular that there is at least one bδ 6= 0. But since det(L) = χ
(
K̃h(L)

)
= 0,

there must be at least two such gradings supporting non-trivial groups. As a result,

determinant 0 links are homologically thick.

2.5 Mapping cones and exact triangles

The skein exact sequence for reduced Khovanov homology – which exists as a result of

the observation that K̃h(L) may be viewed as the homology of a subcomplex of CKh(L)

– carries over directly to our grading conventions (see also (Rasmussen, 2005; Manolescu

and Ozsváth, 2007)). For a link L( ) with distinguished positive crossing we have that

−→ K̃h
(
L( )

)
[−1

2c, 1
2(3c + 2)] −→ K̃h

(
L( )

)
−→ K̃h

(
L( )

)
[−1

2 , 1
2 ] −→

and for a link with distinguished negative crossing L( ) we have

−→ K̃h
(
L( )

)
[12 ,−1

2 ] −→ K̃h
(
L( )

)
−→ K̃h

(
L( )

)
[−1

2(c + 1), 1
2(3c + 1)] −→

Omitting grading shifts for the moment, and simplifying with the notation for L( ),

4Jones shows that VL(1) = 2|L|−1 (Jones, 1985, Theorem 15), hence VL(t) 6= 0 for any link L.
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these exact sequences are often represented by exact triangles of the form

K̃h( )
&&NNN

NN

K̃h( )

88ppppp

K̃h( )
[1,0]oo_ _ _ _ _ _ _ _

Since we are working over a field, the homology K̃h(L) is completely determined by the

groups K̃h( ) and K̃h( ), together with the connecting homomorphism. This leads

directly to the notion of a mapping cone (see (Weibel, 1994, Chapter 1), for example,

or (Ozsváth and Szabó, 2005c, Section 4)), which will be a useful point of view in the

sequel. That is

C̃Kh( ) ∼=
(
C̃Kh( )⊕ C̃Kh( ), D

)
where

D =

∂0 0

∂ ∂1


is a differential (since we are working over F) composed of the differential on C̃Kh( )

(denoted ∂0), the differential on C̃Kh( ) (denoted ∂1), and ∂, the component of the

differential inducing the connecting homomorphism. Passing to homology, we have that

K̃h( ) ∼= H∗

(
K̃h( ) → K̃h( )

)
where the connecting homomorphism raises homological δ-grading by one.

Replacing the grading shifts (in terms of δ and q), we have

K̃h( ) ∼= H∗

(
K̃h( )[−1

2 , 1
2 ] → K̃h( )[−1

2c, 1
2(3c + 2)]

)
K̃h( ) ∼= H∗

(
K̃h( )[−1

2(c + 1), 1
2(3c + 1)] → K̃h( )[12 ,−1

2 ]
)

The singly δ-graded group will be useful in many instances, and in this setting the
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mapping cones simplify to yield

K̃h( ) ∼= H∗

(
K̃h( )[−1

2 ] → K̃h( )[−1
2c]
)

K̃h( ) ∼= H∗

(
K̃h( )[−1

2(c + 1)] → K̃h( )[12 ]
)

where [·] shifts the δ-grading.

2.6 Normalization and Support

In calculations involving the skein exact sequence absolute gradings are essential. There-

fore, we will generally need to fix an orientation, although the final result will not depend

on this choice so long as we remain consistent, according to Remark 2.3.

In particular, w(L) depends only on K̃h(L) as a relatively graded group, however deter-

mining this quantity in practice will depend on absolute gradings. For this reason we

introduce the notion of support Supp(K̃h(L)) as an absolutely Z-graded quantity. Thus

if

K̃h( ) ∼= H∗

(
K̃h( )[−1

2 ] → K̃h( )[−1
2c]
)

and Supp
(
K̃h( )[−1

2c]
)
⊆ Supp

(
K̃h( )[−1

2 ]
)

then we may write

K̃h( ) ∼= H∗

 Fb1

##FFFF Fb2

""EE
EE

E
· · ·

""FF
FF

F Fbk

Fb′1 Fb′2 · · · Fb′k


for bi ≥ 0, since the connecting homomorphism raises δ-grading by 1.

The following will be a useful absolutely Z-graded object:

Definition 2.13. The σ-normalized Khovanov homology is an absolutely Z-graded the-

ory defined by K̃hσ(L) = K̃h(L)[−σ(L)
2 ] where σ(L) denotes the signature of the link

L.

This turns out to be a natural grading to consider, despite the fact that we are interested
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only in the relative grading, ultimately. Of course, K̃hσ(L) and K̃h(L) coincide as

relatively Z-graded groups.

2.7 The Manolescu-Ozsváth exact sequence

As a singly graded theory, there is a useful special case in which the skein exact sequence

simplifies nicely in terms of the σ-normalization.

Proposition 2.14. (Manolescu and Ozsváth, 2007, Proposition 5) Let L = L( )

be a link with some distinguished crossing, and set L0 = L( ) and L1 = L( ). If

det(L0),det(L1) > 0 and det(L) = det(L0) + det(L1) then

K̃hσ(L) = H∗

(
K̃hσ(L0) → K̃hσ(L1)

)
.

In the standard notation, this takes the form

K̃h(L)[−σ
2 ] = H∗

(
K̃h(L0)[−σ0

2 ] → K̃h(L1)[−σ1
2 ]
)

.

where σ = σ(L), σ0 = σ(L0) and σ1 = σ(L1) (see (Manolescu and Ozsváth, 2007)).

Notice, in particular, that in this setting the orientation of the resolved crossing does

not play a role and the pair of exact sequences have a single expression.

2.8 A digression on the signature of a link

We briefly review the work of Gordon and Litherland, constructing the signature of a

link via the Goeritz matrix (Gordon and Litherland, 1978). The conventions we adopt

are those of (Manolescu and Ozsváth, 2007), since our interest will be in proving a

degenerate form of Proposition 2.14.

The complement of a projection of a link L is divided into regions that may be coloured

black and white in an alternating fashion to obtain the checkerboard colouring. Denote
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the white regions by R0, R1, . . . , Rn. By eliminating nugatory crossings,5 we may assume

that every crossing c of the diagram for L is incident to distinct white regions, and assign

an incidence number µ(c) and type by the conventions of Figure 2.3.

µ = +1 µ = −1 Type I Type II
Figure 2.3 Incidence numbers and crossing types.

The incidence number of the diagram for L is obtained by taking the sum of incidences

over crossings of type II. Setting

µ(L) =
∑

c of type II

µ(c),

the Goeritz matrix of G for the diagram of L is the n× n symmetric matrix

gij =


−
∑

c∈Rij

µ(c) i 6= j

−
∑
i6=k

gik i = j

where Rij = Ri ∩Rj for i, j ∈ {1, . . . , n}.

Then the signature of the link L is given by

σ(L) = signature(G)− µ(L)

and

det(L) = |det(G)|

(Gordon and Litherland, 1978).

5This amounts to applying Reidemeister I moves.
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2.9 Degenerations

We now prove that Manolescu and Ozsváth’s exact sequence degenerates (in a very

controlled manner) when one of the pair of determinants vanishes. Once again, a single

expression is obtained in each case.

Proposition 2.15. Using the same conventions as Proposition 2.14, if det(L0) = 0

and det(L) = det(L1) 6= 0 then

K̃hσ(L) = H∗

(
K̃hσ(L0)[−1

2 ] → K̃hσ(L1)
)

.

Similarly, if det(L1) = 0 and det(L) = det(L0) 6= 0 then

K̃hσ(L) = H∗

(
K̃hσ(L0) → K̃hσ(L1)[12 ]

)
.

Proof. The proof closely follows the argument in (Manolescu and Ozsváth, 2007) es-

tablishing Proposition 2.14, and as such we will adopt the same notation. Throughout,

σ = σ(L), σ0 = σ(L0) and σ1 = σ(L1). There are 2 orientations to consider in each

case, hence 4 cases to consider in total.

Figure 2.4 Colouring conventions for case 1: L, L0 (the oriented resolution) and L1

(the unoriented resolution) at the resolved positive crossing. For case 2 the white and
black regions are exchanged to yield the dual colouring.

Case 1: Suppose the distinguished crossing is positive, with det(L0) = 0, and fix a

checkerboard colouring of the diagram for L as in Figure 2.4 so that the distinguished

crossing is of type II with incidence µ = +1. Now writing G1 for the Goeritz matrix of

L1, we have

G =

 a v

vT G1

 and G0 =

a− 1 v

vT G1


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where G and G0 are the Goeritz matrices of L and L0 respectively. As in (Manolescu

and Ozsváth, 2007), we assume without loss of generality that G1 is diagonal (with

diagonal entries α1, . . . , αn) and write the bilinear form associated to G as

(
a−

n∑
i=1

v2
i

αi

)
x2

0 +
n∑

i=1

αi

(
xi +

vi

αi
x0

)2

.

Similarly, the bilinear form associated to G0 may be written as

(
a− 1−

n∑
i=1

v2
i

αi

)
x2

0 +
n∑

i=1

αi

(
xi +

vi

αi
x0

)2

so that setting

β = a−
n∑

i=1

v2
i

αi

we obtain

det(G) = β det(G1) and det(G0) = (β − 1) det(G1).

Now since 0 = det(L0) = |det(G0)| = |β − 1|det(L1) and det(L1) 6= 0, we have that

β = +1 and

signature(G) = signature(G0) + 1 = signature(G1) + 1.

Using the Gordon-Litherland formula for the signature we have that

σ = signature(G)− µ

= signature(G0) + 1− (µ0 + 1)

= σ0
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where µ = µ(L) and µ0 = µ(L0), while writing µ1 = µ(L1) gives

σ = signature(G)− µ

= signature(G1) + 1− (µ1 + c + 1)

= σ1 − c

as in (Manolescu and Ozsváth, 2007), noting that the incidence and type of a crossing

determines its sign. Now since

K̃h (L) ∼= H∗

(
K̃h (L0) [−1

2 ] → K̃h (L1) [− c
2 ]
)

we have −1 = σ − σ0 − 1 and −c = σ − σ1 so that

K̃h (L) [−σ
2 ] ∼= H∗

(
K̃h (L0) [−σ0+1

2 ] → K̃h (L1) [−σ1
2 ]
)

.

In terms of the σ-normalization,

K̃hσ(L) = H∗

(
K̃hσ(L0)[−1

2 ] → K̃hσ(L1)
)

as claimed.

Case 2: If once again we consider a positive distinguished crossing, but instead the

resolution L1 has det(L1) = 0, then fix the dual colouring to that of Figure 2.4 so that

the distinguished crossing is of type I with incidence µ = −1. Now letting G, G0 and

G1 be the Goeritz matrices for L, L0 and L1 respectively, we have that

G =

 a v

vT G0

 and G1 =

a + 1 v

vT G0


Diagonalizing yields

det(G) = β det(G0) and det(G1) = (β + 1) · det(G0)
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so our hypothesis forces β = −1, resulting in

signature(G) = signature(G0)− 1 = signature(G1)− 1.

Therefore,

σ = signature(G)− µ

= signature(G0)− 1− µ0

= σ0 − 1

while

σ = signature(G)− µ

= signature(G1)− 1− (µ1 + c)

= σ1 − c− 1

so that −1 = σ − σ0 and c = σ − σ1 + 1. Thus

K̃h (L) ∼= H∗

(
K̃h (L0) [−1

2 ] → K̃h (L1) [− c
2 ]
)

yields

K̃h (L) [−σ
2 ] ∼= H∗

(
K̃h (L0) [−σ0

2 ] → K̃h (L1) [−σ1−1
2 ]
)

.

In terms of the σ-normalization,

K̃hσ(L) = H∗

(
K̃hσ(L0) → K̃hσ(L1)[12 ]

)
as claimed.

Case 3: Suppose the distinguished crossing is negative, with det(L1) = 0; the argument

varies only slightly. This time, fixing the checkerboard colouring for the diagram of L so

that the distinguished crossing is again of type II, the incidence is µ = −1 (see Figure
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2.5).

Figure 2.5 Colouring conventions for case 3: L, L0 (the unoriented resolution) and L1

(the oriented resolution) at the resolved negative crossing. For case 4 the white and
black regions are exchanged to yield the dual colouring.

Following the conventions above, we have that

G =

 a v

vT G0

 and G1 =

a + 1 v

vT G0


(notice that the resolutions exchange roles and have been renamed accordingly). Diag-

onalizing we obtain

det(G) = β det(G0) and det(G1) = (β + 1) · det(G0)

so our hypothesis forces β = −1, resulting in

signature(G) = signature(G0)− 1 = signature(G1)− 1.

Now

σ = signature(G)− µ

= signature(G0)− 1− (µ0 + c)

= σ0 − c− 1
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as in (Manolescu and Ozsváth, 2007) while

σ = signature(G)− µ

= signature(G1)− 1− (µ1 − 1)

= σ1.

Finally, since

K̃h (L) ∼= H∗

(
K̃h (L0) [− c+1

2 ] → K̃h (L1) [12 ]
)

we conclude that

K̃h (L) [−σ
2 ] ∼= H∗

(
K̃h (L0) [−σ0

2 ] → K̃h (L1) [−σ1−1
2 ]
)

.

In terms of the σ-normalization,

K̃hσ(L) = H∗

(
K̃hσ(L0) → K̃hσ(L1)[12 ]

)
as claimed.

Case 4: With distinguished negative crossing but det(L0) = 0, we use the dual colouring

to that of Figure 2.5, so that the distinguished crossing is of type I with incidence

µ = +1, and proceed as before. In this case we have

G =

 a v

vT G1

 and G0 =

a− 1 v

vT G1


Diagonalizing yields

det(G) = β det(G1) and det(G0) = (β − 1) · det(G1)

so our hypothesis forces β = +1, resulting in

signature(G) = signature(G0) + 1 = signature(G1) + 1.
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Therefore,

σ = signature(G)− µ

= signature(G0) + 1− (µ0 + c + 1)

= σ0 − c

while

σ = signature(G)− µ

= signature(G1) + 1− µ1

= σ1 + 1

so that

K̃h (L) ∼= H∗

(
K̃h (L0) [− c+1

2 ] → K̃h (L1) [12 ]
)

yields

K̃h (L) [−σ
2 ] ∼= H∗

(
K̃h (L0) [−σ0+1

2 ] → K̃h (L1) [−σ1
2 ]
)

In terms of the σ-normalization,

K̃hσ(L) = H∗

(
K̃hσ(L0)[−1

2 ] → K̃hσ(L1)
)

as claimed.



CHAPTER III

HEEGAARD-FLOER HOMOLOGY

Shortly after the introduction on Khovanov homology, Ozsváth and Szabó introduced

an invariant of closed, orientable 3-manifolds called Heegaard-Floer homology (Ozsváth

and Szabó, 2004d; Ozsváth and Szabó, 2004c). This area has been one of intense activity,

and some of the developments parallel aspects of Khovanov homology. The intention of

this chapter is not to attempt a complete account of this theory, but rather a survey of

those aspects that relate to this thesis’ focus on Khovanov homology. Indeed, certain

elements of the two theories are closely entwined, and it is on this point that we aim to

elaborate.

There is a collection of notes that summarize the theory (Ozsváth and Szabó, 2006a;

Ozsváth and Szabó, 2006b), as well as a survey paper (Ozsváth and Szabó, 2005a).

There is also a survey by McDuff giving a slightly different perspective (McDuff, 2006),

outlining in particular the role played by Lagrangian-Floer homology. Some of the most

important early developments in the theory are also due (independently) to Rasmussen,

and as such his work provides an excellent account. We point to (Rasmussen, 2002) and

(Rasmussen, 2003), in particular.

3.1 Ozsváth and Szabó’s construction

We begin by giving a brief overview of the definition of ĤF(Y ) associated to a smooth,

oriented, closed, connected 3-manifold. As with Khovanov homology, we work over
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F = Z/2Z, and for the moment we make the further assumption that Y is a rational

homology sphere.

The construction depends on a choice of pointed Heegaard diagram (Σg,α,β, z) for Y ,

where g denotes the genus of the Heegaard surface f−1(3
2) for some self indexing Morse

function f → [0, 3] (as in Section 1.5), and z is a point in Σg r α r β.

The g-fold symmetric product of Σg is defined

Symg Σg =

g︷ ︸︸ ︷
Σ× · · · × Σ

/
Sg

where Sg is the symmetric group on g letters acting by permuting the coordinates.

Symg Σg turns out to be a complex manifolds (see (Griffiths and Harris, 1994), for exam-

ple), essentially due to the fundamental theorem of algebra.1 For example, Sym1 Σ1
∼=

S1×S1 (obvious) and Sym2 Σ2
∼= (S1×S1×S1×S1)#CP

2 (less obvious, see (Bertram

and Thaddeus, 2001)). Symmetric products are studied extensively in (Macdonald,

1962).

Perutz demonstrates that Symg Σg is a symplectic manifold (Perutz, 2008, Section 7),

and the two natural tori

Tα = α1 × · · · × αg

and

Tβ = β1 × · · · × βg

are Lagrangian submanifolds. By isotopy of the surface Σg, we may assume that the

intersection Tα ∩ Tβ is transverse. The key idea then, is to consider the Lagrangian-

Floer homology CF(Tα,Tβ) in this particular setting (Floer, 1988),2 and show that it

1In a local chart on Σg, the fundamental theorem of algebra allows us to move between the
coefficients of a polynomial of degree g and its roots.

2While this invariant is not always well defined, the key observation here is that Symg Σg is a
relatively simple symplectic manifold. In particular, π2(Symg Σg) has relatively simple structure – in
technical terms, Symg Σg is monotone – and as a result the chain complex CF(Tα,Tβ) is well defined.
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is an invariant of the underlying 3-manifold.

Let ĈF(Y ) be the F-vector space generated by the set of intersection points x ∈ Tα ∩

Tβ. The differential on the complex ĈF(Y ) arises from counting holomorphic disks

in Symg Σg. This assumes a choice of complex structure on Σg, inducing an almost

complex structure on Symg Σg.

Let D = {z : |z| ≤ 1} be the standard unit disk in C. For intersection points x,y ∈

Tα ∩Tβ let π2(x,y) denote the homotopy classes of Whitney discs from x to y. That

is

π2(x,y) =

φ : D → Symg Σg

∣∣∣∣∣∣∣∣∣∣
φ(−i) = x

φ(i) = y

φ(e+) ⊂ Tα

φ(e−) ⊂ Tβ


where e+ = {z ∈ ∂D : R(z) > 0} and e− = {z ∈ ∂D : R(z) < 0}.

When φ admits a holomorphic representative, we denote the Maslov index of φ by µ(φ);

this quantity can be shown to be the expected dimension of the moduli space M(φ) of

holomorphic disks φ. There is a natural R action on D fixing ±i so that according to

Gromov, M̂(φ) = M(φ)
/
R is a finite number of points whenever µ(φ) = 1 (Gromov,

1985). Now the differential is defined by

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

µ(φ)=1

nz(φ)=0

∣∣∣M̂(φ)
∣∣∣
(mod 2)

y.

Here, nz(φ) is the algebraic intersection with the complex codimension 1 submanifold

{z} × Symg−1 Σg ⊂ Symg Σg.

The definition of ∂ depends on a variety of choices which we have glossed over. In

particular, a choice of complex structure on Σg is required, as well as a path of nearly
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symmetric almost complex structures on Symg Σg (see (Ozsváth and Szabó, 2004d,

Section 3.1; Section 4.1)).

Theorem 3.1. (Ozsváth and Szabó, 2004d) There exist generic choices so that ∂2 = 0.

Definition 3.2. Denote by ĤF(Y ) the homology of the complex (ĈF(Y ), ∂).

Theorem 3.3. (Ozsváth and Szabó, 2004d) The homology ĤF(Y ) is an invariant of

the manifold Y specified by the pointed Heegaard diagram (Σ,α,β, z).

Remark 3.4. The proof of invariance requires an analogue of Singer’s result (see Sec-

tion 1.5) for pointed Heegaard diagrams, described in (Ozsváth and Szabó, 2004d, Sec-

tion 7).

There are some technical complications that arise when the restriction to rational homol-

ogy spheres is removed. This is handled by considering a special subclass of admissible

pointed Heegaard diagrams (Ozsváth and Szabó, 2004d, Section 4.2). With this done,

the Heegaard-Floer homology groups are defined as above.

3.2 Variants

There is a variant CF∞(Y ) that is given by a free F[U,U−1]-module generated, once

again, by intersections points x ∈ Tα ∩Tβ. In this setting,

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

µ(φ)=1

∣∣∣M̂(φ)
∣∣∣
(mod 2)

Unz(φ)y

where deg(U) = −2.

Using the identification U ix = [x, i], there is a natural subcomplex

ι : CF−(Y ) ↪→ CF∞(Y )

generated by [x, i] for i ≤ 0. This is a free F[U ]-module, giving rise to a short exact



57

sequence

0 −→ CF−(Y ) −→ CF∞(Y ) −→ CF+(Y ) −→ 0

The induced action U : CF+(Y ) → CF+(Y ) gives rise to a second short exact sequence

0 −→ ĈF(Y ) −→ CF+(Y ) −→ CF+(Y ) −→ 0

Both short exact sequences induce long exact sequences between the resulting homology

groups denoted HF∞(Y ), HF−(Y ) and HF+(Y ), with ĤF(Y ) as above.

Definition 3.5. The reduced Heegaard-Floer homology is the finitely generated F-vector

space given by HFred(Y ) = ker(ι∗). Equivalently, HFred(Y ) = ker(UN ) ⊂ HF−(Y ) for

sufficiently large N .

3.3 Gradings

There are two gradings on ĈF(Y ) the first is a relative Z/2Z-grading that is switched

by the differential, and the second is a splitting

ĈF(Y ) =
⊕

s∈Spinc

ĈF(Y, s)

that descends to a splitting of ĤF(Y ). Both gradings make use of the isomorphism

H1(Y ; Z) ∼=
H1(Σg; Z)

[α1], . . . , [αg], [β1], . . . , [βg]
∼=

H1(Symg Σg; Z)
H1(Tα; Z)⊕H1(Tβ; Z)

(3.1)

The Z/2Z-grading may be seen in terms of homological data. Fixing an arbitrary

orientation on both Tα and Tβ, we can compare this to the orientation Σg induces on

Symg Σg in the following way: set ι(x) = ±1 depending on whether or not the orientation

on Tx Symg Σg agrees with that of TxTα ⊕ TxTβ. Then the algebraic intersection is

given by

Tα ·Tβ =
∑

x∈Tα∩Tβ

ι(x),
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and only the overall sign on Tα ·Tβ depends on the arbitrary choice of orientations on

Tα and Tβ.

The same intersection may be defined directly on the Heegaard surface, since an arbi-

trary orientation of the αi and βi induces an orientation on Tα and Tβ, respectively.

Now if gij = αi ·βj then Tα ·Tβ = det(gij). Notice however that, for the natural cell de-

composition obtained from the Morse function f , the matrix (gij) defines the differential

C2(Y ; Z) → C1(Y ; Z) on the cellular homology of Y . Therefore, Tα ·Tβ = ±|H1(Y ; Z)|.

Now the Heegaard-Floer complex decomposes by ĈF =
⊕

i∈Z/2Z ĈFi(Y ) where ι(x) =

(−1)i. Although ι(x) depends on the orientation imposed on Tα and Tβ, ι(x)ι(y) =

(−1)µ(φ) for φ ∈ π2(x,y). As a result, ∂ : ĈFi(Y ) → ĈFi+1, giving rise to a Z/2Z-

grading on ĤF(Y ). Moreover, by construction

χĤF(Y ) = rk ĈF0(Y )− rk ĈF1(Y ) = Tα ·Tβ = ±|H1(Y ; Z)|.

Thus, we have sketched:

Lemma 3.6. (Ozsváth and Szabó, 2006b, Lemma 1.6)

χĤF(Y ) = ±|H1(Y ; Z)|

Here, and throughout, we use the convention that |H1(Y ; Z)| = 0 whenever the manifold

has H1(Y ; Q) 6= 0. In general, we will fix this grading with the choice χĤF(Y ) =

|H1(Y ; Z)|, as in the case of χK̃h(L) for L ↪→ S3.

Remark 3.7. This relative Z/2Z-grading admits a lift to an absolute Q-grading (Ozsváth

and Szabó, 2003a).

There is a further refinement by decomposing according to Spinc-structures on Y . Such

a structure is a lift of the frame bundle over Y (with structural group SO(3)) to a

principle U(2)-bundle over Y . Turaev gives an equivalent definition in terms of vector

fields on Y (Turaev, 1997).
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Definition 3.8. Two non-vanishing vector fields v1 and v2 on a 3-manifold Y are called

homologous if they are homotopic on the complement of a finite collection of 3-balls in

Y .

As a result, we get an equivalence relation on non-vanishing vector fields: v1 ∼ v2 if

and only if v1 and v2 are homologous. Denoting by Vect(Y ) the space of non-vanishing

vector fields on Y , Turaev shows that

Spinc(Y ) = Vect(Y )/ ∼ .

This point of view is useful in the present context, since the Morse function f gives

rise to a non-vanishing vector field on Y by the following procedure. Consider the

gradient vector field ∇f on Y (for some fixed Riemannian metric). By our choice of

Morse function this has 2g + 2 critical points. For a given x ∈ Tα ∩ Tβ, we have a

g tuple of points (x1, . . . , xg) in Σg, determining g + 1 flow-lines γx1 , . . . , γxg , γz. Note

that a neighbourhood of γz contains the index 0 and index 3 critical points, while the

neighbourhoods of the γxi , taken together, contain the index 1 and index 2 critical

points. As a result, ∇f defines a non-vanishing vector field on Y once neighbourhoods

of these flow lines are removed, and since each flow line contains exactly one critical

point of each parity, deg∇f |ν(γx1 ) = deg∇f |ν(γz) = 0 and hence the vector field may

be extended to give sz(x) ∈ Spinc(Y ) (see (Milnor, 1963)).

Now given a pair of points x,y ∈ Tα ∩Tβ, consider arcs a ∈ Tα and b ∈ Tβ beginning

at x and ending at y; denote by ε(x,y) ∈ H1(Y ; Z) the image of the class [a − b]

under the isomorphism (3.1). Ozsváth and Szabó show that π2(x,y) 6= ∅ if and only

if ε(x,y) = 0.3 The splitting of ĤF(Y ) according to Spinc(Y ) results then from the

following:

3Strictly speaking, we should restrict to g > 1 at this point. There are technical difficulties that
arise when g = 1; these are handled in (Ozsváth and Szabó, 2004d, Section 2.4).
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Lemma 3.9. (Ozsváth and Szabó, 2004d, Lemma 2.19)

sz(x)− sz(y) = PD[ε(x,y)] ∈ H2(Y ; Z)

Remark 3.10. Spinc(Y ) is an affine space for H2(Y ; Z). For a fixed trivialization

τ : TY → Y × R we have

δτ : Spinc(Y ) → H2(Y ; Z)

where δτ (v) = v∗µ. Here v is taken to be orthonormal (having fixed a Riemannian metric

on Y ) and gives a homeomorphism v : Y → S2, and µ is the generator of H2(S2; Z).

This turns out to be a bijection, and although it depends on τ , it can be shown that the

difference δ(v1, v2) = δτ (v1)− δτ (v2) is independent of this choice. As a result,

δ(v, ·) : Spinc(Y ) → H2(Y ; Z)

gives a bijection for any v ∈ Spinc(Y ), and writing

H2(Y ; Z)× Spinc(Y ) → Spinc(Y )

(a, v) 7→ a + v

such that δ(a + v, v) = a gives the affine structure. Details are spelled out in (Ozsváth

and Szabó, 2004d, Section 2.6).

Now we have that

ĤF(Y ) =
⊕

s∈Spinc(Y )

ĤF(Y, s),

and this splitting respects the Z/2Z-grading. As a result, Lemma 3.6 may be refined:

Lemma 3.11. (Ozsváth and Szabó, 2004c, Proposition 5.1)

χĤF(Y, s) =


±1 if H1(Y ; Q) = 0

0 otherwise
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3.4 The surgery exact sequence

There is a long exact sequence in Heegaard-Floer homology that results from considering

surgery on a knot, or more generally fillings of a knot manifold. Given a manifold M

with torus boundary, together with a pair of slopes α and β forming a basis for surgery

(that is , α ·β = +1), then the triple of manifolds (M(α),M(β),M(α+β)) form a triad

of 3-manifolds; the triple (α, β, α + β) is a triad of slopes.

The key property enjoyed by a triad is as follows. Note that, given a choice of orientation

on the rational longitude λM , if there exists choices4 for which α ·λM = +1 and β ·λM =

+1 we have

|H1(M(α + β); Z)| = cM∆(α + β, λM )

= cM |α · λM + β · λM |

= cM |α · λM |+ cM |β · λM |

= |H1(M(α); Z)|+ |H1(M(β); Z)|

Now there is a long exact sequence relating any such triad

−→ ĤF(M(α)) −→ ĤF(M(β)) −→ ĤF(M(α + β)) −→

Notice that this relates +1-surgery on a β-framed knot in M(α), to the manifolds M(α)

and M(β), hence the terminology surgery exact sequence. In particular, for a knot

K ↪→ S3 we have that

−→ ĤF(S3) −→ ĤF(S3
n(K)) −→ ĤF(S3

n+1(K)) −→

for any n ≥ 0.

With this exact sequence as a point of departure, Ozsváth and Szabó demonstrate an

4Such choices always exist, though this generally comes at the expense α · β = ±1.
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incredible relationship between Khovanov homology and Heegaard-Floer homology.

Theorem 3.12. (Ozsváth and Szabó, 2005c, Theorem 1.1) There is a spectral sequence

with E2
∼= K̃h(L?), converging to E∞ ∼= ĤF(Σ(S3, L)), where L? denotes the mirror

image of L.

Recall that K̃h(L?) amounts to considering the dual of K̃h(L). We will elaborate on

aspects of this result in the next chapter, recording for the moment the following:

Corollary 3.13. (Ozsváth and Szabó, 2005c, Corollary 1.2)

det(L) ≤ rk ĤF(Σ(S3, L)) ≤ rk K̃h(L)

Proof. The first inequality follows from det(L) = |H1(Σ(S3, L); Z)|, together with

Lemma 3.6. The second inequality results from rk K̃h(L) = rk K̃h(L?), together with

Theorem 3.12.

Of course, we have observed previously that det(L) = χK̃h(L), which yields the inequal-

ity det(L) ≤ rk K̃h(L) (see Section 2.4).

3.5 L-spaces

An L-space is a rational homology sphere with Heegaard-Floer homology that has small-

est possible rank. The prototypical examples are lens spaces,5 and in particular S3 is

an L-space.

Definition 3.14. A closed, connected, orientable 3-manifold is an L-space if it is a

rational homology sphere with the property that

rk ĤF(Y ) = |H1(Y ; Z)| .

5Hence, L-space abbreviates the somewhat longer moniker Heegaard-Floer homology lens space.
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Equivalently, these manifolds are characterized by having HFred(Y ) = 0. While L-spaces

are certainly of interest in the context of Heegaard-Floer homology, they seem to be an

important class of manifolds more generally.

Theorem 3.15. (Ozsváth and Szabó, 2004a, Theorem 1.4) L-spaces do not admit taut

foliations.6

We devote this section to some interesting examples of L-spaces (see (Ozsváth and

Szabó, 2005b; Ozsváth and Szabó, 2005c)).

Proposition 3.16. Σ(S3, L) is an L-space whenever L is a homologically thin link.

Proof. This is immediate from Corollary 3.13, combined with the fact that det(L) =

rk K̃h(L) for thin links (see Section 2.4).

Since non-split, alternating links7 are thin (Lee, 2005), it follows that the two-fold

branched cover of a non-split, alternating link is an L-space. These links are a subset

of a much larger class with the same property.

Definition 3.17. The set of quasi-alternating links Q is the smallest set of links con-

taining the trivial knot, and closed under the following relation: if L admits a projection

with distinguished crossing L( ) so that

det(L( )) = det(L( )) + det(L( ))

for which L( ), L( ) ∈ Q, then L = L( ) ∈ Q as well.

Ozsváth and Szabó show that non-split, alternating links are quasi-alternating, and that

Σ(S3, L) is an L-space whenever L is quasi-alternating (Ozsváth and Szabó, 2005c).

6In this context, a foliation F of Y is called taut whenever it is co-orientable, and there exists
a closed curve in Y that meets every leaf of F transversally (Eliashberg and Thurston, 1998).

7Recall that, by definition, an alternating link admits an alternating link diagram.
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Indeed, this may be seen as a generalization of Lee’s result, as Manolescu and Ozsváth

have shown that quasi-alternating links are homologically thin (Manolescu and Ozsváth,

2007). We remark however that w(L) = 1 (see Definition 2.10) is not equivalent to

L ∈ Q: examples of homologically thin knots that are not quasi-alternating have been

given by A. Shumakovitch8 and J. Greene9.

Proposition 3.18. (Ozsváth and Szabó, 2005b, Proposition 2.3) A manifold with el-

liptic geometry (equivalently, finite fundamental group, see Remark 1.17) is an L-space.

In fact, there is a complete characterization of Seifert fibered L-spaces (in terms of

Seifert invariants) whenever the base orbifold is S2 (Ozsváth and Szabó, 2003c).

As a particular example, the Poincaré homology sphere is an L-space, although this

manifold (and its mirror image) is the only known prime, integer homology three-sphere

with this property.

Question 3.19. Are the Poincaré homology sphere, its mirror image, and S3 the only

prime manifolds for which the Heegaard-Floer homology is rank one? 10

Remark 3.20. This example demonstrates, however, that w(L) = 1 is not necessary to

obtain an L-space Σ(S3, L): the Poincaré homology sphere arises as Σ(S3, 10124) (see

Chapter 1) where w(10124) = 2 (see Chapter 2).

From the surgery point of view, L-spaces are somewhat rare. For example:

Theorem 3.21. (Ozsváth and Szabó, 2005b, Theorem 1.2) If K ↪→ S3 yields an L-space

8In a remark during a lecture by C. Manolescu at the conference Knots in Washington XXVI: the
knot 946 has thin Khovanov homology but an off-diagonal Z/3Z in odd-Khovanov homology (Ozsváth
et al., 2007).

9Private communication: the knot 11n
50 has Khovanov, odd-Khovanov, and knot Floer homolo-

gies all supported in a single diagonal but it is not quasi-alternating.

10A conjecture has not been made, in print, in either direction. However, during his lectures at
PCMI in 2006, Z. Szabó conjectured that the answer is “yes”.
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via Dehn surgery, then

∆K(t) = (−1)k +
k∑

i=1

(−1)k−i(tni + t−ni)

where ∆K(t) is the Alexander polynomial of K, for some sequence of integers 0 < n1 <

· · · < nk.

This is quite restrictive, as demonstrated for example by (the proof of) the following

fact:

Theorem 3.22. (Ozsváth and Szabó, 2005b, Theorem 1.5) Surgery on a hyperbolic,

alternating knot in S3 never yields an L-space.

Further restrictions are given by the topology of the knot complement.

Theorem 3.23. (Ghiggini, 2008; Ni, 2007) If K ↪→ S3 admits an L-space via Dehn

surgery, then K must be fibered.

Theorem 3.24. (Kronheimer et al., 2007; Hedden, 2007; Rasmussen, 2007) If S3
n(K)

is an L-space, then g ≤ n where g is the Seifert genus of K.

On the other hand, a given L-space surgery on S3 yields an infinite family of L-spaces.

Proposition 3.25. (Ozsváth and Szabó) For any triad of 3-manifolds (M(α),M(β),M(α+

β)), if M(α) and M(β) are L-spaces, then M(α + β) is an L-space as well.

Proof. Combining the surgery exact sequence with the homological properties of the

triad we obtain

rk ĤF(M(α + β)) ≤ rk ĤF(M(α)) + rk ĤF(M(β)) = |H1(M(α + β); Z)|

It follows that if S3
n(K) is an L-space, then so is S3

n+1(K). More generally we have:
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Proposition 3.26. (Ozsváth and Szabó) Given a knot K ↪→ S3 for which S3
p/q(K) is

an L-space, S3
r/s(K) is also an L-space for all r

s ≥
p
q .

Proof. We include a very quick – though machinery heavy – proof of this fact. Cal-

culating the rank of the Heegaard-Floer homology for surgery on a knot K ↪→ S3 is

accomplished by the formula

rk ĤF(S3
p/q(K)) = |p|+ 2 max {0, (2BK − 1)|q| − |p|}+ |q|CK

from (Ozsváth and Szabó, 2005d, Proposition 9.5), for non-negative constants BK , CK

depending on K. In our setting, we may assume that p, q > 0, and since S3
p/q(K) is an

L-space, rk ĤF(S3
p/q(K)) = p. This forces (2BK − 1)q − p ≤ 0 and CK = 0.

Now suppose r
s ≥

p
q . Then

rk ĤF(S3
r/s(K)) = r + 2 max {0, (2BK − 1)s− r}

but

BK ≤ 1
2(p

q + 1) ≤ 1
2( r

s + 1)

forces (2BK − 1)s− r ≤ 0 so that rk ĤF(S3
r/s(K)) = r as claimed.

Thus, despite the fact that L-spaces seem to be rare in certain respects, it is easy to

construct large families of L-spaces:

Corollary 3.27. Up to taking mirrors, all sufficiently large surgeries on a torus knot

(or more generally, Berge knot) yield L-spaces.

Another interesting family of examples results from considering certain pretzel knots.

Theorem 3.28. (Goda et al., 2005; Ozsváth and Szabó, 2005b) The (−2, 3, q)-pretzel

knots admit L-space surgeries for all q ≥ 3.
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This results from the calculation of the knot Floer homology (see Section 3.7) for this

family of knots (Goda et al., 2005, Theorem 5.1), together with (Ozsváth and Szabó,

2005b, Theorem 1.3). See also (Ozsváth and Szabó, 2005b, Page 12). Of course, for

q = 3, 5 these are torus knots, when q = 7 this pretzel is a Berge knot (in fact, an

example of a hyperbolic knot admitting a lens space surgery of (Fintushel and Stern,

1980)), and when q = 9 we obtain an example of Bleiler and Hodgson of a hyperbolic

knot admitting finite fillings (Bleiler and Hodgson, 1996).

The large-surgery property (Proposition 3.26) for L-spaces gives rise to another inter-

esting class:

Proposition 3.29. (Boyer and Watson, 2009) Suppose Y is a Seifert fibered space with

base orbifold B = RP 2(a1, . . . , an). Then Y is an L-space.

Proof. First recall that if B = RP 2(a1) then the Seifert structure is not unique. Such a

Y is either RP 3#RP 3 or admits a Seifert fibre structure with base orbifold S2(2, 2, n)

for some n > 0. Note however that Y has finite fundamental group in this case (see

Proposition 1.16), and is therefore an L-space according to Proposition 3.18.

We take this as a base case for induction on the number of singular fibres. Suppose that

any Y with base orbifold RP 2(a1, . . . , an) is an L-space. Choose a regular fibre ϕ in Y

and let M = Y rν(ϕ). This is a manifold with torus boundary for which H1(M ; Q) = Q

(see Section 1.7). The rational longitude λM coincides (as a slope in ∂M) with a regular

fibre in ∂M according to Proposition 1.22.

Choosing a meridian µ for the fibre ϕ with the property that µ ·λM = 1 we have a basis

for Dehn surgery. That is

Yp/q(ϕ) = M(α)

where α = pµ + qλM . Note that this new Seifert fibered space has base orbifold

RP 2(a1, . . . , an, an+1)
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where an+1 = ∆(α, λM ) by Theorem 1.21. In particular, by our induction hypothesis

M(α) is an L-space whenever ∆(α, λM ) = 1. This occurs whenever α = µ + qλM for

any q ∈ Z.

Now (µ, µ + λM , 2µ + λM ) form a triad of slopes in ∂M . Since µ · λM = 1, this follows

readily from the fact that

|H1(M(2µ + λM ); Z)| = cM∆(2µ + λM , λM )

= cM∆(µ, λM ) + cM∆(µ + λM , λM )

= |H1(M(µ); Z)|+ |H1(M(µ + λM ); Z)|

where cM > 0 is a fixed constant depending only on M as in Lemma 1.5. As a result

Y2(ϕ) = M(2µ + λM ) is an L-space, and moreover Yn(ϕ) = M(nµ + λM ) is an L-space

for all n > 0, since both M(µ) and M(µ + λM ) are L-spaces.

This observation does not depend on our choice of µ, and more generally, given α =

µ + qλM for any integer q, the triple (α, nα + λM , (n + 1)α + λM ) form a triad for

any n > 0. This completes the induction, as we have that Yp/q(ϕ) is an L-space for

every p, q with p, q ∈ Z for which (p, q) = 1 and p > 0.11 In other words, M(α) is an

L-space for any slope α 6= λM (that is, any slope other than the fibre slope). Of course,

H1(M(λM ); Q) = Q, so this manifold cannot be an L-space.

With these properties and examples in hand, consider the following open problem:

Question 3.30. (Ozsváth and Szabó, 2005a, Question 11) Is there a topological classi-

fication on L-spaces (that is, one that does not reference Heegaard-Floer homology)?

11Indeed, for any slope pµ + qλM , writing µ = α − q′λM for some q′ we have that pµ + qλM =
pα + (q − pq′)λM in terms of the basis (α, λM ).



69

3.6 A characterization of Seifert fibered L-spaces

Definition 3.31. A group G is called left-orderable if there exists a strict total ordering

< on its elements such that g < h implies fg < fh for all elements f, g, h ∈ G.

While the trivial group obviously satisfies such a criteria, for the present purposes we will

fix the convention that the trivial group is not left-orderable. By a result of Howie and

Short, any manifold M with torus boundary satisfying H1(M ; Q) = Q gives an example

of a fundamental group that is left-orderable (Howie and Short, 1985). However, it is

certainly possible that Dehn filling of such a manifold yields a manifold with fundamental

group that is not left-orderable, and this phenomenon has been studied extensively in

work of Boyer, Rolfsen and Wiest (Boyer et al., 2005).

The aim of this section is to establish a connection between L-spaces and orderablity of

fundamental groups.

Theorem 3.32. (Boyer and Watson, 2009) Suppose Y is a closed, connected, ori-

entable, Seifert fibered 3-manifold. Then Y is an L-space if and only if π1(Y ) is not

left-orderable.

Proof. If Y is a rational homology sphere then the base orbifold has underlying surface

either S2 or RP 2 (see Section 1.7).

By a result of Lisca and Stipsicz (Lisca and Stipsicz, 2007, Theorem 1.1), in the case

where the base orbifold is S2, Y is an L-space if and only if Y does not admit a horizontal

foliation. By a result of Boyer, Rolfsen and Wiest (Boyer et al., 2005, Theorem 1.3(b)),

these Y admit a horizontal foliation if and only if π1(Y ) is left-orderable.

The result of (Boyer et al., 2005, Theorem 1.3(b)) does not restrict to the case B = S2,

and indeed if B = RP 2 then π1(Y ) is never left-orderable (unless, of course, H1(Y ; Q) 6=

0). Thus, to conclude the proof we appeal to Proposition 3.29.

Remark 3.33. As noted previously, Ozsváth and Szabó give a characterization of Seifert
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fibered L-spaces (in terms of Seifert invariants) whenever the base orbifold is S2 (Ozsváth

and Szabó, 2003c). This, in turn, is exploited in (Lisca and Stipsicz, 2007), and leads to

the above result when the base orbifold is orientable when combined with (Boyer et al.,

2005).

3.7 The knot filtration

There is a refinement of Heegaard-Floer homology to an invariant for knots in S3 (more

generally, to rationally null homologous knots in an arbitrary 3-manifold). This arises

from the fact that the knot induces a filtration on the Heegaard-Floer homology of the

underlying 3-manifold; this filtration controls the Heegaard-Floer homology of manifolds

obtained by surgery on the knot, a fact discovered independently in (Ozsváth and

Szabó, 2004b) and (Rasmussen, 2003). This is a powerful tool, and is the source of

results such as Theorem 3.21, as well as machinery such as that used in the proof of

Proposition 3.26. Indeed, the knot filtration gives rise to a mapping cone formula for

computing the Heegaard-Floer homology groups resulting from surgery (Ozsváth and

Szabó, 2008; Ozsváth and Szabó, 2005d).

A knot in S3 may be described by specifying a doubly pointed Heegaard diagram for

S3, (Σg,α,β, z, w). This means that S3 decomposes along Σg according to some Morse

function f : S3 → [0, 3], and the union of the gradient flow lines specified by z and w

form a knot K (passing through the index 0 and index 3 critical points of f).

Now ĈF(S3) may be described using the pointed Heegaard diagram (Σg,α,β, z), and

the knot K specified by introducing the second point w induces a filtration on the

complex

F(x)−F(y) = nw(φ)− nz(φ)

for any φ ∈ π2(x,y). Notice that if y appears in ∂x then F(x) − F(y) ≥ 0 since

nz(φ) = 0, defining a subcomplex

F(K, i) ⊂ ĈF(S3).
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Considering the induced homomorphism H∗(F(K, i)) → ĤF(S3) ∼= F gives rise to a knot

invariant τ(K), defined as the smallest integer i for which this morphism is non-trivial.

In general, |τ(K)| gives a lower bound on the Seifert genus, but whenever K admits

lens space surgery we have that |τ(K)| = g(K) (Ozsváth and Szabó, 2003b; Ozsváth

and Szabó, 2005b).

The homology of the associated graded quotient complex defines the knot Floer homol-

ogy

ĤFK(S3,K, i) ∼= H∗ (F(K, i)/F(K, i− 1)) .

There is some information lost in passing to the homology of the associated graded

quotient complex, but this still yields a powerful invariant. It may be computed by

defining ĈFK(S3,K) the F-vector space generated by Tα ∩Tβ as usual, but imposing

the differential

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

µ(φ)=1

nz(φ)=0,nw(φ)=0

∣∣∣M̂(φ)
∣∣∣
(mod 2)

y.

Writing ĤFK(S3,K, i) = ĤFK(K, i) we have that this theory categorifies the Alexander

polynomial in the sense that

∆K(t) =
∑

(−1)uti rk ĤFKu(K, i).

While the similarity here to Khovanov homology is striking, it is particularly intriguing

given that the constructions of each of these invariants is extremely different.

3.8 Characterizations of the trivial knot

As an invariant of knots in S3, knot Floer homology has the following notable property.

Theorem 3.34. (Ozsváth and Szabó, 2004a, Theorem 1.2) Let g be the Seifert genus

of a knot K ↪→ S3. Then ĤFK(K, g) 6= 0, and in particular this invariant detects the

trivial knot.
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There are some weaker incarnations of this fact that will be useful, characterizing the

trivial knot in terms of surgery.

Proposition 3.35. If S3
n(K) is an L-space for every n 6= 0 then K is the trivial knot.

Proof. If S3
n(K) is an L-space, for all n 6= 0, then in particular S3

+1(K) is an L-space.

Then by Theorem 3.24, g ≤ n, and if K is non-trivial we may assume that g = 1. Hence

by Theorem 3.23, K is a genus 1 fibered knot and must be the trefoil. In fact, S3
+1(K)

must be the Poincaré sphere, and K is the right-hand trefoil.

Now consider S3
−1(K): this manifold must also be an L-space by our hypothesis. How-

ever, it is well known that −1-surgery on the right-hand trefoil yields the same manifold

as the +1-surgery on the figure eight knot (see, for example, (Rolfsen, 1976, Chapter

9)). But this contradicts Theorem 3.22 as this knot is alternating but not torus, hence

does not admit L-space surgeries.12

It is interesting to note that Proposition 3.35 is true only when restricting to knots in

S3: Proposition 3.29 shows that any regular fibre in a Seifert fibration over RP 2 is a

knot with this same property.

Proposition 3.36. If S3
N (K) is an L-space, for all N large enough in absolute value,

then K is the trivial knot.

Proof. Since S3
N (K) is an L-space for N >> 0 we have that g(K) = τ(K) by (Ozsváth

and Szabó, 2005b, Proposition 3.3). On the other hand, S3
−N (K) ∼= −S3

N (K?) is an

L-space as well, so that g(K?) = τ(K?). However, it is a standard property of τ that

τ(K?) = −τ(K) (Ozsváth and Szabó, 2003b, Lemma 3.3). Therefore, since g(K) =

g(K?) we have shown that τ(K) = g(K) = −τ(K) hence g(K) = 0 and K must be the

trivial knot.

12Equivalently, it may be seen by direct computation via the mapping cone formula for integer
surgeries (Ozsváth and Szabó, 2008) that −1-surgery on the right-hand trefoil is not an L-space. Note

also that the calculation of cHF(S3
n(K)), when K is the trefoil, was originally given in (Ozsváth and

Szabó, 2004c). In brief, Proposition 3.35 is certainly “known to the experts”.
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We remark that, from the argument above, it is enough to have the existence of some

N0 for which both S3
+N0

(K) and S3
−N0

(K) are L-spaces to ensure that K is the trivial

knot.

Knots in S3 are also well understood in the context of Question 3.19 (see, for example,

(Hedden and Watson, 2008)):

Proposition 3.37. If S3
1/q(K) is an L-space for some non-trivial knot K, then q = 1

(respectively −1) and K is the right-hand (respectively left-hand) trefoil. In particular,

the Poincaré homology sphere (and its mirror image) are the only non-trivial L-space

integer homology spheres that arise via surgery on a knot in S3.

Proof. By passing to the mirror image of K if necessary, we may assume without loss

of generality that q > 0.

Since S3
1/q(K) is an L-space, Proposition 3.26 ensures that S3

+1(K) is an L-space as

well. In this case, Theorem 3.24 forces g ≤ 1, and since K is non-trivial by hypothesis

we have that g = 1 (and the knot Floer homology of K must be that of the trefoil by

(Ozsváth and Szabó, 2005b)). Now Theorem 3.23 implies that K is fibered. Thus, as a

fibered, genus one knot admitting an L-space surgery, K can only be the trefoil.
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CHAPTER IV

INVOLUTIONS AND TANGLES

We turn now to tangles, one of our primary objects of study. These arise naturally as the

component pieces of knots and links (the approach taken by Conway in his enumeration

of knots (Conway, 1970)), however we will be more interested in tangles as the branch

sets for certain manifolds with torus boundary (Lickorish takes this is the point of view

(Lickorish, 1981)).

It is difficult to give accurate historical references for much of this material, as many of

the results seem firmly entrenched in folklore. The decomposition of knots into tangles,

and in particular the relationship between rational tangles and continued fractions,

however, is generally attributed to Conway (Conway, 1970).1 For more on this approach,

new proofs and further references see (Goldman and Kauffman, 1997; Kauffman and

Lambropoulou, 2004).

The study of tangles from the point of view of two-fold branched covers seems to have

been popularized by Montesinos (Montesinos, 1975). The approach taken in this work

is heavily influenced by Montesinos’ unpublished notes (Montesinos, 1976), as well as

the work of Lickorish in the study of prime knots (Lickorish, 1981). We also point to

(Bleiler, 1985; Montesinos and Whitten, 1986) bearing particular relation to this work,

though these references are certainly not exhaustive.

1The tangles that we will consider are 2-tangles, sometimes called Conway tangles.
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Finally, much of the material that will be needed can be found in Rolfsen’s classic text

(Rolfsen, 1976), which has become the standard reference.

4.1 Tangles

A tangle is a pair T = (B3, τ) where B3 is a 3-ball and τ ↪→ B3 is a pair of properly

embedded arcs meeting the boundary transversally in 4 distinct points, together with a

finite collection (possibly empty) of closed components. That is,

τ : I t I t S1 t · · · t S1︸ ︷︷ ︸
k≥0

↪→ B3.

Equivalence of tangles is through homeomorphism of the pair (B3, τ) that need not fix

the boundary in general (though ∂τ is always 4 points). This is the point of view taken

in Lickorish, for example (Lickorish, 1981).

Tangles arise naturally as component pieces of knots. Given a knot K ↪→ S3 and an

embedding S2 ↪→ S3 such that S2 intersects K transversely in 4 points, the resulting

decomposition of S3 into 3-balls restricts to a decomposition of K into tangles, denoted

K = T0 ∪ T1. Since Σ(S2, {4 points}) = Σ(∂B3, ∂τ) is a torus, the key observation is

that such a decomposition of K lifts to a decomposition of the two-fold branched cover

Σ(S3,K) along a torus.

A tangle is called rational whenever it is homeomorphic to the tangle (B3, ). These

are the simplest tangles, but they play an important role.

Definition 4.1. A knot K has tangle unknotting number one if there is a decomposition

K = T0∪T1 with the property that T0∪T2 is the trivial knot, where T1 and T2 are rational

tangles.

Notice that this generalizes the common notion of unknotting number one: such a knot

contains the specific rational tangle (B3, ), and becomes trivially knotted when this

tangle is replaced with the tangle (B3, ). Of course (B3, ) ∼= (B3, ) as tangles (in
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the present setting), though this is rarely the case when such a tangle is included in a

knot since this effectively fixes a choice of framing (see below).

4.2 An action of the 3-strand braid group

As with knot diagrams, we will generally confuse a tangle T = (B3, τ) and a diagram in

the plane representing it. However, as we are considering tangles up to homeomorphism

that need not fix the boundary, there are many diagrams (in the sense of Conway)

representing a given tangle (in the sense of Lickorish).

To this end, we introduce a particular action of the 3-strand braid group

B3 = 〈σ1, σ2

∣∣σ1σ2σ1 = σ2σ1σ2〉

on the space of tangles, T . Braids in this setting are depicted horizontally, read from

left to right, with standard generators

σ1 = σ2 =

For a given braid β ∈ B3 the action

T ×B3 → T

(T, β) 7→ T β

is defined by taking T β as the tangle depicted in Figure 4.1.

T β

Figure 4.1 The tangle T β.



78

It is straightforward to verify that this is a well defined action on tangles (see (Watson,

2006), for example). Notice that this specifies a homeomorphism of the given tangle, and

as such this action is trivial when considering tangles up to homeomorphism (though

the choice of diagram for a fixed tangle may be altered dramatically). However, this

action of B3 turns out to be useful when viewed as a change of framing.

4.3 Strong inversions and two-fold branched covers

A knot K ↪→ S3 is called strongly invertible whenever there is an involution taking the

knot to itself, and fixing exactly 2 points on the knot. Since there is a unique orientation

preserving involution with non-empty fixed point set on S3 up to isotopy (Waldhausen,

1969),2 an equivalent definition is that such knots may be put into general position with

respect to the fixed point set of this involution, as follows (c.f. Definition 1.11):

Definition 4.2. Given a knot K ↪→ S3, let f be the restriction of the standard involution

on S3 to the complement M = S3 r ν(K). A knot K ↪→ S3 is strongly invertible if

f is an involution on M for which Fix(f) intersects the boundary ∂M transversally in

exactly 4 points.

Notice that in this setting Fix(f) is always a pair of arcs embedded in M .

A natural first example is given by the trivial knot. This is a strongly invertible knot

by virtue of the fact that the solid torus is a two-fold branched cover of a solid ball,

branched over a pair of unknotted arcs. These arcs are obtained by intersecting a

tubular neighbourhood of the trivial knot (a solid torus) with the fixed point set of

the standard involution on S3. In fact, we have the following equivalent definition of a

rational tangle (see (Lickorish, 1981)).

Definition 4.3. A rational tangle has two-fold branched cover that is a solid torus.

The collection of rational tangles arise by considering T β for all β ∈ B3 where T =

2Thus, we take as standard involution on S3 ∼= R3 ∪ {∞} the rotation fixing the z-axis.
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(B3, ). As a result, each of these choices of representative for T are in bijection with

the possible Seifert fibrations of the solid torus (as in Section 1.7) in the cover (see

(Montesinos, 1976)).

More generally, we have the following:

Proposition 4.4. When K ↪→ S3 is strongly invertible, the quotient of M by the action

of f is a 3-ball.

Proof. Extending f to S3, across the surgery torus of the trivial surgery, gives the

standard involution on S3 by definition of strong invertibility. The quotient of this

involution is S3, decomposed along a sphere obtained by the quotient of the torus ∂M .

Since S3 decomposes into a pair of 3-balls for any smooth embedding S2 ↪→ S3, M/f

must therefore be homeomorphic to B3.

As a result, for any strongly invertible knot K ↪→ S3, the complement M = S3 r ν(K)

is a two-fold branched cover of a tangle T = (B3, τ), where τ is given by the image of

Fix(f) in the quotient. Thus, while M/f is a relatively simple manifold, as an orbifold

it may be quite complicated.

A second example is provided by the trefoil. This is a strongly invertible knot, as illus-

trated in Figure 4.2. To construct the tangle that arises as the quotient, a fundamental

domain for the involution is needed. Then the tangle may be obtained by isotopy, as

shown. With a little more care, it is possible to keep track of the image of the canon-

ical longitude in the quotient (see (Bleiler, 1985), for example). The resulting tangle

diagrams illustrated are homeomorphic, giving two different representatives for the quo-

tient tangle. Indeed, by (Schreier, 1924) or (Montesinos, 1976), this tangle is unique up

to homeomorphism.

Remark 4.5. There is another way to see that the tangle given in Figure 4.2 is accurate,

from the point of view of (Montesinos, 1976). Notice that this tangle is a sum of two

rational tangles: this reflects the Seifert fibre structure in the cover, recalling that the
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∼=

Figure 4.2 The trefoil with its strong inversion (left), an isotopy of a fundamental
domain for the involution (centre), and two homeomorphic views of the tangle associated
to the quotient (right). Notice that both representatives of the tangle have the property
that τ(1

0) is the trivial knot, giving a branch set for the trivial surgery.

complement of the trefoil is Seifert fibered over D2(2, 3). Indeed, the two tangles lift to

a pair of solid tori identified along an essential annulus, the cores of which are singular

fibres of order 2 and 3.

There is a large class of examples from which to draw, since many “small” knots3 turn

out to be strongly invertible. The same is true for some familiar classes of knots: all two-

bridge knots are strongly invertible (see (Montesinos, 1976)), as are all torus knots by

3Deliberately impresise, but we take this to mean knots with up to 11 crossings (i.e. those found
in Rolfsen’s table), say.



81

a result of Schreier (Schreier, 1924). More generally, Berge knots provide an interesting

class of strongly invertible knots (Osborne, 1981), since they embed on a Heegaard

surface of genus 2.

It is possible to work with a slightly larger class of manifolds with torus boundary. In

general, a strong inversion on a manifold with torus boundary will refer to an involution

with 1-dimensional fixed point set intersecting the boundary transversally in 4 points,

as in Definition 1.11.

Definition 4.6. Given an irreducible knot manifold M with H1(M ; Q) = Q, suppose

that there is a strong inversion f ∈ End(M) with the property that M/f is homeomor-

phic to a ball. Such M will be called a simple, strongly invertible knot manifold.

For a given simple, strongly invertible knot manifold, there is always a tangle T =

(B3, τ) associated to the quotient of the strong inversion. Thus M = Σ(B3, τ), where

T = (B3, τ) will be referred to as the associated quotient tangle. Note that in the

presence of multiple strong inversions, this tangle is not unique and depends on a fixed

choice of involution. In the given notation, T refers to the homeomorphism class of the

tangle, while τ will denote a given choice of representative. Such a choice will often

arise as a choice of diagram for the tangle.

Notice that, by construction, there is a natural operation of reflection on a simple

strongly invertible knot manifold given by M? = Σ(B3, τ?) where M = Σ(B3, τ) and

τ? denotes the mirror of the branch set.

While complements of strongly invertible knots in S3 provide the primary source of

examples of simple, strongly invertible knot manifolds, we remark that the latter is

certainly a much larger class. For example, the exterior of a generalized torus knot –

those manifolds Seifert fibered over the disk with two cone points – always provides

such a manifold. The following is due to Montesinos.

Proposition 4.7. (Montesinos, 1976) Let Y be a Seifert fibre space with base orbifold

S2(p, q, r). Then Y ∼= M(α) where M is a simple strongly invertible knot manifold and
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M has Seifert fibre structure with base orbifold D2(p, q).

Proof. Let M be a knot manifold endowed with a Seifert fibre structure and suppose

that the base orbifold is D2(p, q), the disk with two cone points. We may assume that

D2 = {z ∈ C : |z| ≤ 1}, and that the cone points p, q lie to either side of 0 on the

real axis in the interior of D2. Note that such a Seifert fibre space is a union of solid

tori along an essential annulus that corresponds to the lift of the imaginary axis in the

interior of D2. As we have noted previously, the solid torus admits a strong inversion,

and such a strong inversion fixes the singular fibre of any Seifert fibre structure on the

solid torus. In particular, the solid torus as a Seifert fibre space has base orbifold D2

with a single cone point, and the strong inversion corresponds to a reflection in the real

axis. Now the reflection ρ(z) = z̄ in the real axis (fixing the cone points p, q) lifts to a

strong inversion on M , and ρ fixes the singular fibres.

Choose a regular fibre ϕ ⊂ ∂M . By Theorem 1.21, the Dehn filling M(ϕ) must be a

connect sum of lens spaces. Further, extending the strong inversion across the surgery

torus gives a strong inversion on M(ϕ), the quotient of which is S3 (Montesinos, 1976).

As a result, M/f ∼= B3 as in the proof of Proposition 4.4.

Now suppose that Y is Seifert fibered, with base orbifold S2(p, q, r). Removing a tubular

neighbourhood of a singular fibre yields a knot manifold M that is Seifert fibered with

base orbifold D2(p, q). Such an M must be simple and strongly invertible.

As a particular example, it follows that the twisted I-bundle

over the Klein bottle is a simple, strongly invertible knot man-

ifold (this manifold is not the complement of a knot in S3, but

rather the complement of a knot representing twice the gener-

ator of the first homology in S2×S1). The associated quotient

tangle for this manifold is shown on the right; note that this

is the unique manifold with a D2(2, 2) structure (see, for example, (Montesinos, 1976))

and this structure, arising as the identification of two fibered solid tori (each with base
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orbifold D2(2)) along an essential annulus, is reflected in this tangle as the sum of

rational tangles.

4.4 Branch sets for Dehn fillings

For a given simple strongly invertible knot manifold M , any representative of the as-

sociated quotient tangle T has a pair of distinguished arcs (γ 1
0
, γ0) in the boundary as

illustrated in Figure 4.3 that meet in a single point. The hemisphere (that is, the eastern

and southern hemisphere) containing each arc lifts to an annulus in ∂M = Σ(∂B3, ∂τ),

so that the pair (γ 1
0
, γ0) lifts to a (unoriented) basis for H1(∂M ; Z). By fixing an

orientation so that γ̃ 1
0
· γ̃0 = 1, we obtain a basis for Dehn fillings of M .

T γ 1
0

γ0

Figure 4.3 The arcs γ 1
0

(red) and γ0 (blue) in the boundary of T .

Let p
q = [a1, . . . , ar] denote the continued fraction expansion

p
q = a1 + 1

a2+ 1

a3+··· 1
ar

where a1 ≥ 0 and ai > 0 for i > 1 when p
q ≥ 0 (when p

q ≤ 0, a1 ≤ 0 and ai < 0 for

i > 1). To p
q we associate the braid

β =


σa1

2 σ−a2
1 · · ·σ−ar

1 r even

σa1
2 σ−a2

1 · · ·σar
2 r odd

Now observing that 0 = [0], and fixing the convention 1
0 = [ ] (with length r = 0), denote

by τ(p
q ) the link obtained by the closure of T β depending on whether r is even or odd

as in Figure 4.4 (a particular example is shown in Figure 4.5).
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τ(0) = T τ(1
0) = T

Figure 4.4 The odd-closure τ(0) and the even-closure τ(1
0) of the tangle T .

Now the strong inversion on M extends to an involution on a Dehn filling of M , giving

rise to a two-fold branched cover of S3, branched over a link that we may now make

explicit.

Proposition 4.8. Let M be a simple strongly invertible knot manifold. For a given

slope α = pγ̃ 1
0

+ qγ̃0 we have that Σ(S3, τ(p
q )) ∼= M(α).

Sketch of proof. First observe that Σ(S3, τ(0)) ∼= M(γ̃0) and Σ(S3, τ(1
0)) ∼= M(γ̃ 1

0
).

Now consider the action of σ2. We claim that this half twist (viewed as an action on

the disk with 2 marked points) lifts to a Dehn twist along the curve γ̃ 1
0
. Indeed, the

two fold branched cover of this disk is an essential annulus in ∂M (c.f (Rolfsen, 1976,

Chapter 10)). In terms of the basis (γ̃ 1
0
, γ̃0), this Dehn twist may be written

1 0

1 1

.

Similarly, the action of σ−1
1 lifts to a Dehn twist about γ̃0; this takes the form

1 1

0 1

.

In particular, we have that Σ(S3, τ(n)) ∼= M(nγ̃ 1
0
+γ̃0) and Σ(S3, τ( 1

n)) ∼= M(γ̃ 1
0
+nγ̃0).

In general, for p
q = [a1, . . . , ar], the action of the associated braid may be written (in

the case r is even) as 1 1

0 1

ar

· · ·

1 1

0 1

a2
1 0

1 1

a1

(the case r odd differs only in the first matrix of this product). We leave it to the reader

to check that the first column of the resulting matrix is

q

p

 so that we have specified

the filling slope α = pγ̃ 1
0

+ qγ̃0 as desired. Details may be found in Rolfsen (Rolfsen,

1976, Chapter 10).
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Corollary 4.9. Given a basis (α, β) for surgery in ∂M there is a choice of representative

for T so that (γ 1
0
, γ0) lifts to (α, β).

Proof. For any choice of representative of T , write α = pγ̃′1
0

+ qγ̃′0. In terms of this

representative then, M(α) = Σ(S3, τ(p
q )). However, by removing the arcs forming the

closure as in Figure 4.4, the resulting tangle may be viewed as a reframing of T , and

yields a representative compatible with α. By twisting, this representative may be made

compatible with (α, β) since α · β = 1.

As a result, for any choice of basis (α, β) for Dehn surgery on a simple strongly invertible

knot manifold, a compatible representative for the associated quotient tangle exists so

that α = γ̃ 1
0

and β = γ̃0. Notice that, as a result of Lemma 1.5, we have that

det(τ(p
q )) = cM∆(pγ̃ 1

0
+ qγ̃0, λM ) = cM∆(pα + qβ, λM )

once a basis for Dehn surgery, and compatible associated quotient tangle have been

fixed. In particular, given a strongly invertible knot in S3 there is always a choice of

associated quotient tangle for which

S3
p/q(K) = Σ(S3, τ(p

q )).

Such a representative will be referred to as the canonical representative for the associated

quotient tangle.

The fact that Dehn surgery on simple, strongly invertible knot manifolds may be viewed

as a rational tangle attachment in the branch set is a generalization – or perhaps,

incarnation – of the Montesinos trick (Montesinos, 1975), which says that an unknotting

number one knot has two-fold branch cover that may be obtained by half-integer surgery

on some other knot in S3. More generally, we have:

Proposition 4.10. The two-fold branched cover of a tangle unknotting number one

knot may be obtained by surgery on a knot in S3.
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Proof. Let K = T0 ∪ T1 be a tangle unknotting number one knot (as in Definition 4.1),

and U = T0 ∪ T2 the corresponding tangle decomposition of the trivial knot. Since T1

and T2 are rational, the branched covers Σ(S3,K), Σ(S3, U) differ only in a solid torus,

that is, by a Dehn surgery. On the other hand, the branched cover of the trivial knot

is the three-sphere.

Finally, the arguments in the sequel simplify considerably due to the following observa-

tion which allows us, up to mirrors, to consider only positive surgery coefficients (and

hence restrict to positive continued fractions).

Proposition 4.11. Let M be a simple strongly invertible knot manifold, together with

a fixed basis for Dehn surgery and compatible associated quotient tangle. Then

Σ(S3, τ(p
q )) ∼= −Σ(S3, τ(p

q )?) ∼= −Σ(S3, τ?(−p
q )).

Proof. Since M? = Σ(B3, τ?), we have that M?(α) = Σ(S3, τ(p
q )?). From the definition

for τ(p
q ), it follows that τ(p

q )? ' τ?(−p
q ).

4.5 On continued fractions

There are three fundamental properties for continued fractions relating to Dehn filling

that will be essential for the inductive arguments that follow. Since it will always be

possible as a result of Proposition 4.11 to work with positive4 surgeries – and hence pos-

itive continued fractions – by passing to the mirror image, we will state these properties

for positive continued fractions only.

Therefore, we assume that p
q = [a1, . . . , ar] is positive, with a1 ≥ 0 and ai > 0 for all

i > 1

Property 4.12. bp
q c = a1 and dp

q e = a1 + 1.

4More precisely, positive with respect to the rational longitude λM in the sense that the filling
slope α has the property α · λM > 0.
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Proof. It is immediate from the definition of p
q as a continued fraction that a1 ≤ p

q <

a1 + 1 for p
q = [a1, . . . , ar].

Property 4.13. [a1, . . . , ar, 1] = [a1, . . . , ar + 1].

Proof. This is immediate from the partial evaluation of the continued fraction:

[a1, . . . , ar, 1] = [a1, . . . , ar + 1
1 ] = [a1, . . . , ar + 1]

T ' T

Figure 4.5 The link τ(13
10) obtained from the odd-closure with the fraction [1, 3, 3] (left),

is isotopic to the link obtained from the even-closure with the fraction [1, 3, 2 + 1] =
[1, 3, 2, 1] (right).

It is important to note that this equality of continued fractions manifests itself as isotopic

links when forming τ(p
q ), for any tangle. This results from the fact that the even- and

odd-closures replace one another, as is illustrated in a particular case in Figure 4.5.

Finally, we turn to the behaviour of τ(p
q ) under resolutions.

Definition 4.14. The terminal crossing of τ(p
q ) is the last crossing added by the action

of β ∈ B3 specified by the continued fraction. That is, the terminal crossing corresponds

to the last generator in the braid word β = σa1
2 · · ·σar

ε (where σε is either σ2 or σ−1
1 ,

depending on the parity of r).

Our convention will be that the terminal crossing of τ(p
q ) is resolved to obtain τ(p0

q0
)

and τ(p1

q1
).
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Property 4.15. p
q = p0+p1

q0+q1
where p0

q0
= [a1, . . . , ar−1] and p1

q1
= [a1, . . . , ar−1, ar − 1].

Proof. Recall that a continued fraction may be recursively defined by convergents hn
kn

where h−1 = 0, h0 = 1 and hn = anhn−1 + hn−2 for n > 1, and k−1 = 1, k0 = 0 and

kn = ankn−1 + kn−2 for n > 1.

Now write hr−1

kr−1
= p0

q0
and hr

kr
= p1

q1
, then p0+p1

q0+q1
= hr+hr−1

kr+kr−1
= [a1, . . . , ar − 1, 1], so that

applying Property 4.13 we have p0+p1

q0+q1
= [a1, . . . , ar] = p

q as claimed.

T

T

↙ ↘

T

Figure 4.6 Resolving the terminal crossing of τ(13
10) = τ [1, 3, 3] gives 0-resolution with

p1

q1
= [1, 3, 2] = 9

7 and one resolution with p0

q0
= [1, 3] = 4

3 .

A particular example of Property 4.15 is illustrated in Figure 4.6. Notice that p0

q0

corresponds to the 0-resolution when r is even, and the 1-resolution otherwise. Similarly,
p1

q1
corresponds to the 1-resolution when r is even, and the 0-resolution otherwise.

When p
q = [a1, . . . , ar] we will use the notation τ(p

q ) = τ [a1, . . . , ar] for the closure when

convenient.

4.6 Triads for tangles

Suppose α and β are a pair of slopes in ∂M with α · β = +1. Fix a compatible

representative for the associated quotient tangle T = (B3, τ) with the property that

M(α) = Σ(S3, τ(1
0)) and M(β) = Σ(S3, τ(0)).

Proposition 4.16. If τ(1
0) and τ(0) are quasi-alternating, and α ·λM , β ·λM > 0, then

τ(1) is quasi-alternating as well.
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Remark 4.17. Note that the quasi-alternating hypothesis ensures that neither α nor β

coincides with the rational longitude.

Proof of Proposition 4.16. We need to calculate det(τ(1)). To this end, by applying

Lemma 1.5 we have that

det(τ(1)) = |H1(M(α + β); Z)|

= cM∆(α + β, λM )

= cM |(α + β) · λM |

= cM |α · λM + β · λM |

= cM |α · λM |+ cM |β · λM |

= cM∆(α, λM ) + cM∆(β, λM )

= |H1(M(α); Z)|+ |H1(M(β); Z)|

= det(τ(1
0)) + det(τ(0)),

which verifies that τ(1) is a quasi-alternating link, since both τ(1
0) and τ(0) are quasi-

alternating.

Remark 4.18. Notice that the condition on intersection with λM may be relaxed at the

expense of taking mirrors. For any M(α) and M(β) with quasi-alternating branch sets

τ(1
0) and τ(0) we can ensure positive intersection with λM at the expense of α ·β = ±1.

In the case that α · β = −1, the same argument works by passing to mirrors. Any

quasi-alternating link has quasi-alternating mirror image so that if τ(1
0) and τ(0) are

quasi-alternating then one of τ(−1) or τ(1) is quasi-alternating.

Definition 4.19. A triad of links (τ(1
0), τ(0), τ(1)) corresponds to a triple (α, β, α+β)

where α · β = 1, α · λM > 0, and β · λM > 0.

The requirement that α and β intersect positively with λM is stronger than necessary,

since it is attainable up to taking mirrors. However, with this assumption we have:
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Theorem 4.20. A triad of links, for which τ(1
0) and τ(0) are quasi-alternating, gives

rise to an infinite family of links τ(p
q ) ∈ Q, for p

q ≥ 0.

Proof. First observe that τ(n) is quasi-alternating for every n ≥ 0. This is immediate

by induction on n, since

det(τ(n)) = |H1(M(nα + β); Z)|

= cM∆(nα + β, λM )

= cM |(nα + β) · λM |

= cM |nα · λM + β · λM |

= cM |α · λM |+ cM |((n− 1)α + β) · λM |

= cM∆(α, λM ) + cM∆((n− 1)α + β, λM )

= |H1(M(α); Z)|+ |H1(M((n− 1)α + β); Z)|

= det(τ(1
0)) + det(τ(n− 1)),

with Proposition 4.16 providing a base case.

For τ(p
q ), we need a second induction in the length of the continued fraction p

q =

[a1, . . . , ar]. The base case r = 1 is the observation above that τ(n) is quasi-alternating,

applying Property 4.12.

Suppose then that τ(p
q ) is quasi-alternating for all p

q ≥ 0 that may be represented by

a continued fraction of length r − 1. By resolving the terminal crossing and applying
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Property 4.15,

det(τ(p
q )) = |H1(M(pα + qβ); Z)|

= cM∆(pα + qβ, λM )

= cM |(pα + qβ) · λM |

= cM |(p0 + p1)α · λM + (q0 + q1)β · λM |

= cM |(p0α + q0β) · λM |+ cM |(p1α + q1β) · λM |

= cM∆(p0α + q0β, λM ) + cM∆(p1α + q1β, λM )

= |H1(M(p0α + q0β); Z)|+ |H1(M(p1α + q1β); Z)|

= det(τ(p0

q0
)) + det(τ(p1

q1
))

where p0

q0
= [a1, . . . , ar−1] and p1

q1
= [a1, . . . , ar−1] when r is odd (and these are switched

when r is even). In either case, we are reduced to a continued fraction of length r − 1

which must be quasi-alternating by our induction hypothesis, and a continued fraction

[a1, . . . , ar − 1] with rth entry reduced by one.

Since [a1, . . . , ar−1, 1] = [a1, . . . , ar−1 + 1] by Property 4.13, repeating the above argu-

ment ar − 1 times completes the induction.

Remark 4.21. We point out that Theorem 4.20 can be very useful if one is interested

in constructing infinite families of quasi-alternating links. Indeed, this has been pursued

in (Champanerkar and Kofman, 2007; Widmer, 2008) to construct such families of

Montesinos links. However, these examples are verified using combinatorial methods

for computing the determinant. By using the associated Dehn filling to control the

determinant, a wider range of examples seem accessible. Indeed, it seems likely that the

examples in both works may be recovered via Theorem 4.20.

4.7 Branch sets for L-spaces obtained from Berge knots

Theorem 4.20 gives a tool with which to study the overlap between the various classes

of L-spaces introduced in Chapter 3.



92

Proposition 4.22. For large enough integer surgery coefficient N , the branch set for

S3
N (K) is quasi-alternating whenever K is a Berge knot (up to possibly replacing K by

its mirror). Moreover, for every p
q > N the branch set associated to p

q -surgery on K

must be quasi-alternating.

Proof. For any Berge knot K there is some integer N , positive up to taking mirrors,

with the property that S3
N (K) is a lens space. As a result, (µ,Nµ + λ, (N + 1)µ + λ)

gives a triad of slopes, in terms of the canonical basis (µ, λ) for K.

Moreover, since Berge knots are strongly invertible, there is an associated quotient tangle

T = (B3, τ ′) with representative so chosen so that τ ′(1
0) is unknotted, and S3

N (K) =

Σ(S3, τ ′(0)). By construction, both branch sets are quasi-alternating: the trivial knot

τ ′(1
0) and some non-split 2-bridge link τ ′(0).

Now applying Theorem 4.20, τ ′(p
q ) must be quasi-alternating for every p

q ≥ 0, so that the

L-space S3
(Nq+p)/q(K) is branched over S3 with quasi-alternating branch set τ ′(p

q ).5

As a result, many6 of the L-spaces arising as surgery on a Berge knot are also obtained

as two-fold branched covers of quasi-alternating links. This implies in particular that

the corresponding branch sets have thin Khovanov homology. Although this cannot be

the case for all possible fillings when K is non-trivial (c.f. Proposition 3.35), it turns

out that in terms of homological width, the branch set corresponding to a filling of a

Berge knot cannot be too much more complicated.

Proposition 4.23. Surgery on a Berge knot has branch set with width at most 2.

Proof. Fix a representative T = (B3, τ ′) for the associated quotient tangle of K that is

compatible with the basis for surgery (µ,Nµ + λ), as in Proposition 4.22. According to

5Notice that if N ≤ r
q

then Nq ≤ r so that r = Nq + p for p ≥ 0 and r
q

= Nq+p
q

.

6Though not all: consider the Poincaré homology sphere, for example.
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Proposition 4.22 then, τ ′(p
q ) is homologically thin for all p

q > N (up to taking mirrors)

by virtue of being quasi-alternating.

Notice in particular that τ ′(1) is a homologically thin link, with

K̃h(τ ′(1)) ∼= H∗

(
K̃h(τ ′(0))[−1

2 ] → K̃h(τ ′(1
0))[− c

2 ]
)

(4.1)

where c = n−(τ ′(1
0))−n−(τ ′(1)) = n−(τ ′(1

0))−n−(τ ′(0)). That the resolved crossing of

τ ′(1) is positive follows immediately from the fact that τ ′(1
0) is a trivial knot. Recall that

our choice of orientation is arbitrary, though fixed, since we are working with Khovanov

homology as a relatively Z-graded group in this setting (c.f. Section 2.4).

Similarly,

K̃h(τ ′(−1)) ∼= H∗

(
K̃h(τ ′(1

0))[− c′+1
2 ] → K̃h(τ ′(0))[12 ]

)
where c′ = n−(τ ′(1

0))− n−(τ ′(−1)) = n−(τ ′(1
0))− n−(τ ′(0))− 1 = c− 1 so that

K̃h(τ ′(−1)) ∼= H∗

(
K̃h(τ ′(1

0))[− c
2 ] → K̃h(τ ′(0))[−1

2 ][1]
)

∼= H∗

(
K̃h(τ ′(1

0))[− c
2 ][−1] → K̃h(τ ′(0))[−1

2 ]
)

[1] (4.2)

Now by ignoring the overall shift of [1] since we are working with the relatively δ-graded

group, w(τ ′(1)) = 1 implies that w(τ ′(−1)) ≤ 2 (this follows from comparison of the

expressions (4.1) and (4.2)).

In general, if n > 0 then

K̃h(τ ′(−n)) ∼= H∗

(
K̃h(τ ′(1

0))[− c−n+1
2 ] → K̃h(τ ′(−n + 1))[12 ]

)
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so that by iteratively applying this sequence we obtain

K̃h(τ ′(−n)) ∼= H∗

(⊕
n

K̃h(τ ′(1
0))[− c−n+1

2 ] → K̃h(τ ′(0))[n2 ]

)

∼= H∗

(⊕
n

K̃h(τ ′(1
0))[− c

2 ][−1] → K̃h(τ ′(0))[−1
2 ]

)
[n+1

2 ] (4.3)

As a result, τ ′(−n) may be computed for all n > 0 in terms of τ ′(0) and τ ′(1
0), and it

follows that w(τ ′(−n)) ≤ 2 for all n > 0. Note that width 2 must occur: det(L) = 0

implies w(L) > 1 according to Proposition 2.12. Nevertheless, we obtain the bound as

claimed for all branch sets associated to integer fillings: w(τ ′(n)) ≤ 2 for every integer

n.

The key observation at this stage is that

Supp
(
K̃h(τ ′(n + 1))[x]

)
⊆ Supp

(
K̃h(τ ′(n))[x′]

)
as absolutely Z-graded groups, when shifted (by some [x] and [x′]) according to the

mapping cones above (compare Equations (4.1), (4.2) and (4.3)). In particular, it

follows that

Supp
(
K̃hσ(τ ′(n + 1))

)
⊆ Supp

(
K̃hσ(τ ′(n))

)
since det(τ ′(n + 1)) = det(τ ′(n)) + 1 (and applying Proposition 2.14 or Proposition

2.15).

To conclude the proof, fix the canonical representative for the associated quotient tangle.

That is, S3
0(K) = Σ(S3, τ(0)) while τ(1

0) is the trivial knot as before. We will show that

w(τ(p
q )) ≤ max

{
w(τbp

q c), w(τdp
q e)
}
≤ 2

for every p
q -surgery.

As before, we need only consider p
q > 0; the case p

q < 0 follows by considering mirrors.

Since w(τ(n)) ≤ 2, we have a base case for induction in the length of continued fraction
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p
q = [a1, . . . , ar]. Suppose then that the result holds for all continued fractions of length

r − 1, and that either

Supp
(
K̃hσ(τ [a1, . . . , ar − 1])

)
⊆ Supp

(
K̃hσ(τ [a1, . . . , ar−1])

)
or the inclusion is reversed (recall that the 0- and 1-resolutions alternate roles, depending

on parity). We proceed in two cases.

Case 1: 1 < p
q

By resolving the the terminal crossing of τ(p
q ) = τ [a1, . . . , ar] we have that

det(τ(p
q )) = |H1(M(pµ + qλ); Z)|

= |H1(S3
p/q(K); Z)|

= p

= p0 + p1

= |H1(S3
p0/q0

(K); Z)|+ |H1(S3
p1/q1

(K); Z)|

= det(τ(p0

q0
)) + det(τ(p1

q1
))

since we have fixed a representative compatible with the canonical framing. Notice that

1 ≤ p0

q0
, p1

q1
, so that we are in a position to apply Proposition 2.14:

K̃hσ(τ [a1, . . . , ar])

∼=


H∗

(
K̃hσ(τ [a1, . . . , ar − 1]) → K̃hσ(τ [a1, . . . , ar−1])

)
for r odd

H∗

(
K̃hσ(τ [a1, . . . , ar−1]) → K̃hσ(τ [a1, . . . , ar − 1])

)
for r even
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By iterative application of Proposition 2.14 then we have

K̃hσ(τ [a1, . . . , ar])

∼=


H∗

(⊕
ar−1 K̃hσ(τ [a1, . . . , ar−1 + 1]) → K̃hσ(τ [a1, . . . , ar−1])

)
for r odd

H∗

(
K̃hσ(τ [a1, . . . , ar−1]) →

⊕
ar−1 K̃hσ(τ [a1, . . . , ar−1 + 1])

)
for r even

Now the result follows from the inductive hypothesis. Notice that the expression above

is an abuse of notation: there may be further differentials to consider among the groups

of K̃hσ(τ [a1, . . . , ar−1 + 1]), however this can only lower the width and can be safely

ignored in the present setting. Therefore for 1 ≥ p
q (indeed, 1 ≥ |pq | after considering

mirrors) we have that w(τ(p
q )) ≤ 2.

Case 2: 0 < p
q < 1

The argument is this case is identical, except when passing from length 2 to length 1:

this step relies on the degenerative version of Manolescu and Ozsváth’s exact sequence

in Proposition 2.15.

When r = 2 we have p
q = [0, a2] so that

K̃hσ(τ [0, a2]) ∼= H∗

(
K̃hσ(τ(0))[12 ] → K̃hσ(τ [0, a2 − 1])

)
since det(τ(0)) = 0 and det(τ [0, a2 − 1]) = det(τ [0, a2]), hence

K̃hσ(τ [0, a2]) ∼= H∗

(⊕
a2−1 K̃hσ(τ(0))[12 ] → K̃hσ(τ [0, 1])

)
bearing in mind that there are possible differentials among the K̃hσ(τ(0)). However,

notice that K̃hσ(τ [0, 1]) = K̃hσ(τ(1)) and this may be written as

K̃hσ(τ(1)) ∼= H∗

(
K̃hσ(τ(0))[12 ] → K̃hσ(τ(1

0))
)

which we know to be of width at most 2. Indeed, in showing that this was the case
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(compare (4.2) and (4.3) bearing in mind the framing change of 0 7→ −n), we might

have observed that the group K̃h(τ(1
0)) is “added” to the second diagonal that must

be present in K̃h(τ(0)) (and may or may not be present in K̃h(τ(1))). This is precisely

the requirement on the support of these groups in the previous case, giving rise to the

inductive hypothesis, and is enough to force w(τ [0, a2]) ≤ 2, completing the proof.

4.8 Manifolds with finite fundamental group

Combining work of Hodgson and Rubinstein with work of Lee, we have the following

statement:

Theorem 4.24. If Y is a lens space, then Y is a two fold branched cover of S3, with

branch set of width 1.

Proof. Hodgeson and Rubinstein show that Y is a lens space if and only if it is the

two-fold branched cover of a non-split two-bridge link (Hodgson and Rubinstein, 1985)

(see Theorem 1.13); this family of links is alternating, hence thin, by Lee’s result (Lee,

2005) (see also Section 5.7).

Note that this excludes the manifold S2×S1 since it is branched over the 2-component

trivial link having width 2.

Our main goal is to prove an analogous statement in the case of manifolds with finite

fundamental group.

Theorem 4.25. (Watson, 2008b) A manifold with finite fundamental group is a two-

fold branched cover of S3, with branch set of width at most 2.

Proof. Manifolds with finite fundamental group are all Seifert fibered, and are either

lens spaces or Seifert fibered over S2 with 3 singular fibres (see Propostion 1.16, as well

as Remark 1.17 and Remark 4.26). Due to Theorem 4.24, we need only consider the

latter.
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According to Proposition 1.16, there are two families of base orbifolds to consider: either

S2(2, 3, n) for n = 3, 4, 5, or S2(2, 2, n) for n > 1.

In each case, the manifolds in question may be constructed by filling Seifert fibered

manifolds (with boundary) with base orbifold D2(2, 3) and D2(2, 2), respectively. Note

that the trefoil exterior and the twisted I-bundle over the Klein bottle are the unique

Seifert fibered manifolds with base orbifolds D2(2, 3) and D2(2, 2), respectively.

In light of Theorem 1.14, it is enough to consider the branch sets related to these fillings,

since each of the manifolds in question branches over S3 in a unique way. Each of the

resulting branch sets – which exist by virtue of Proposition 4.7 – is a Montesinos link

composed of 3 rational tangles, encoding the Seifert structure in the cover (Montesinos,

1976).

In the first case, when filling the complement of the trefoil we appeal to Proposition

4.23: the branch set associated to filling a torus knot in S3 has width at most 2.

To complete the proof then, we are left to consider the case of filling the twisted I-bundle

over the Klein bottle, M .

When considered with Seifert structure having base orbifold D2(2, 2), this manifold has

the property that ∆(ϕ, λM ) = 1, where ϕ is a regular fibre in the boundary. Note that

M(λM ) is S2× S1, and M(nϕ + λM ) is a lens space for all n 6= 0 by applying Theorem

1.21. By fixing a representative for the associated quotient tangle compatible with the

basis for surgery (ϕ, λM ) it follows that w(τ(n)) = 1 for all n 6= 0, and w(τ(0)) = 2.



99

Now resolving the terminal crossing in τ(p
q ) we have, for p

q ≥ 0,

det(τ(p
q )) = |H1(M(pϕ + qλM ); Z)|

= cM∆(pϕ + qλM , λM )

= cM |pϕ · λM |

= cM |(p0 + p1)ϕ · λM + (q0 + q1)λM · λM |

= cM |(p0ϕ + q0λM ) · λM |+ cM |(p1ϕ + q1λM ) · λM |

= cM∆(p0ϕ + q0λM , λM ) + cM∆(p1ϕ + q1λM , λM )

= |H1(M(p0ϕ + q0λM ); Z)|+ |H1(M(p1ϕ + q1λM ); Z)|

= det(τ(p0

q0
)) + det(τ(p1

q1
))

in terms of (ϕ, λM ).

This is enough to obtain the result, proceeding by double induction exactly as in the

proof of Proposition 4.23, working with the basis (ϕ, λM ) in place of the canonical basis

(µ, λ).

Remark 4.26. The use of geometrization in this proof may be avoided by instead prov-

ing the statement that two-fold branched covers with finite fundamental group

have branch set with width at most 2. Since our applications will always pertain

to manifolds admitting an involution having non-empty fixed point set, we are naturally

in the setting of the orbifold theorem, as discussed in Remark 1.17.

Alternatively – in the same spirit as Proposition 3.18 – we have the following statement

(that does not depend on geometrization in any form):

Theorem 4.27. A manifold with elliptic geometry is a two-fold branched cover of S3,

with branch set of width at most 2.
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CHAPTER V

WIDTH BOUNDS FOR BRANCH SETS

In this chapter we turn our attention to the behaviour of the Khovanov homology of

branch sets associated to surgery on simple, strongly invertible knot manifolds. For

simplicity, we focus on the case of surgery on strongly invertible knots in S3, though

similar results may be obtained more generally (see Appendix, for example).

This material contained here is new, building on results in (Watson, 2008b), though

width in Khovanov homology has received some attention recently. We point in par-

ticular to recent work of Lowrence studying the homological width of closed 3-braids

(Lowrance, 2009). In this setting, though the focus of each paper is quite different,

some of the results have a similar flavour.

5.1 A mapping cone for integer surgeries

Given a strongly invertible knot K ↪→ S3, with fixed strong inversion, let T = (B3, τ)

be the associated quotient tangle, compatible with the canonical framing (µ, λ). As

in Chapter 4, we will refer to this as the canonical representative for the associated

quotient tangle. Therefore, τ(1
0) is the trivial knot, and S3

0(K) ∼= Σ(S3, τ(0)). As a

result, K̃h(τ(1
0)) ∼= F, and w(τ(0)) > 1 since det(τ(0)) = 0. Notice that τ(0) is a two

component link.
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T

In the interest of studying the Khovanov homology of the branch sets associ-

ated to integer surgery, we choose the orientation on τ(0) shown on the right.

That this is possible follows from the fact that τ(1
0) is the trivial knot; that

such a choice is copacetic results from the fact that K̃h(τ(0)), in the present context, is

a relatively bi-graded group.1 With this orientation on τ(0), there is a natural constant

related to a fixed diagram for the compatible representative of the associated quotient

tangle

cτ = n−(τ(1
0))− n−(τ(0)).

Since τ(1
0) has a single component, cτ is independent of choice of orientation on τ(1

0).

For example, we may rewrite the mapping cones in Khovanov homology as

K̃h(τ(1)) ∼= H∗

(
K̃h(τ(0))[−1

2 , 1
2 ] → K̃h(τ(1

0))[− cτ
2 , 3cτ+2

2 ]
)

since c = n−(τ(1
0))− n−(τ(1)) = n−(τ(1

0))− n−(τ(0)) = cτ , and

K̃h(τ(−1)) ∼= H∗

(
K̃h(τ(1

0))[− cτ
2 , 3cτ−2

2 ] → K̃h(τ(0))[12 ,−1
2 ]
)

since c = n−(τ(1
0)) − n−(τ(−1)) = n−(τ(1

0)) − n−(τ(0)) − 1 = cτ − 1. Notice that in

this case there is an overall [1, 0] shift (which may be ignored, as our interest is in the

relative gradings and not the absolute gradings) so that

K̃h(τ(−1)) ∼= H∗

(
K̃h(τ(1

0))[− cτ
2 , 3cτ−2

2 ][−1, 0] → K̃h(τ(0))[−1
2 ,−1

2 ]
)

[1, 0]

which allows for comparison of the homology of τ(±1) in terms of K̃h(τ(0)) and the

new generator K̃h(τ(1
0)) ∼= F.

More generally, we have:

1Only the absolute grading depends on orientation, as per Section 2.4, so we are free to fix
any orientation for convenience so long as we remain consistent when computing using the skein exact
sequence.
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Lemma 5.1. For any integer m, and positive integer n,

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) →

⊕
n K̃h(τ(1

0))
)

as a relatively Z⊕ Z-graded group, where the integer m may be interpreted as a change

of framing. More precisely, there exist explicit constants x and y and an identification

n−1⊕
q=0

K̃h(τ(1
0))[x, y][0, q] ∼= F[Z/nZ]

as graded F-vector spaces so that

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
.

Proof. This amounts to a careful iterated application of the mapping cone for resolution

of a positive crossing applied to the n positive crossings in τ(m + n). When n = 1 we

have

K̃h(τ(m + 1)) ∼= H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] → K̃h(τ(1

0))[−kτ
2 , 3kτ+2

2 ]
)

where kτ = cτ + m. Set [x, y] = [−kτ
2 , 3kτ+2

2 ]. Now when n = 2 we obtain

K̃h(τ(m + 2)) ∼= H∗

(
K̃h(τ(m + 1))[−1

2 , 1
2 ] → K̃h(τ(1

0))[−kτ+1
2 , 3(kτ+1)+2

2 ]
)

∼= H∗

(
K̃h(τ(m + 1))[−1

2 , 1
2 ] → K̃h(τ(1

0))[x, y][−1
2 , 1

2 ][0, 1]
)

or, by unpacking the group K̃h(τ(m + 1)) as in the previous case,

K̃h(τ(m + 2))

∼= H∗

(
H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] → K̃h(τ(1

0))[x, y]
)

[−1
2 , 1

2 ] → K̃h(τ(1
0))[x, y][−1

2 , 1
2 ][0, 1]

)
as an iterated mapping cone. Said another way, this expression is simply the repeated

application of the long exact sequence. This simplifies considerably however, since the

two occurrences of the group K̃h(τ(1
0)) ∼= F appear in the same δ-grading. Since the
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differential of the mapping cone (or, the connecting homomorphism of the long exact

sequence) raises δ-grading by one, there cannot be a differential between the copies of

K̃h(τ(1
0)). As result,

K̃h(τ(m + 2))

∼= H∗

(
K̃h(τ(m))[−1, 1] → K̃h(τ(1

0))[x, y][−1
2 , 1

2 ]⊕ K̃h(τ(1
0))[x, y][−1

2 , 1
2 ][0, 1]

)
∼= H∗

(
K̃h(τ(m))[−1, 1] →

⊕1
q=0 K̃h(τ(1

0))[x, y][−1
2 , 1

2 ][0, q]
)

∼= H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] →

⊕1
q=0 K̃h(τ(1

0))[x, y][0, q]
)

[−1
2 , 1

2 ]

Now suppose for induction that

K̃h(τ(m + n− 1)) ∼= H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] →

⊕n−2
q=0 K̃h(τ(1

0))[x, y][0, q]
)

[−n−2
2 , n−2

2 ]

and consider the group

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m + n− 1))[−1

2 , 1
2 ] → K̃h(τ(0))[− c

2 , 3c+2
2 ]
)

where c = n−(τ(1
0))+n−1−n−(τ(m+n−1)) = n−(τ(1

0))−n−(τ(m))+n−1 = kτ +n−1.

Then

K̃h(τ(m + n))

∼= H∗

(
K̃h(τ(m + n− 1))[−1

2 , 1
2 ] → K̃h(τ(0))[−kτ+n−1

2 , 3(kτ+n−1)+2
2 ]

)
∼= H∗

(
K̃h(τ(m + n− 1))[−1

2 , 1
2 ] → K̃h(τ(0))[−kτ

2 , 3kτ+2
2 ][0, n− 1][−n−1

2 , n−1
2 ]
)

∼= H∗

(
H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] →

⊕n−2
q=0 K̃h(τ(1

0))[x, y][0, q]
)

[−n−2
2 , n−2

2 ][−1
2 , 1

2 ]

→ K̃h(τ(1
0))[x, y][0, n− 1][−n−1

2 , n−1
2 ]
)

∼= H∗

(
K̃h(τ(m))[−1

2 , 1
2 ] →

⊕n−1
q=0 K̃h(τ(1

0))[x, y][0, q]
)

[−n−1
2 , n−1

2 ]

noting once again that each of the occurrences of K̃h(τ(1
0)) differs only in the secondary

grading.
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Now as a relatively graded group, we are free to ignore the overall grading shift [−n−1
2 , n−1

2 ].

Moreover, since K̃h(τ(1
0)) ∼= F, fixing an identification

n−1⊕
q=0

K̃h(τ(1
0))[x + 1

2 , y − 1
2 ][0, q] ∼= F[q]/qn ∼= F[Z/nZ]

we have that

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
as a relatively Z⊕ Z-graded group.

Remark 5.2. As stated, this lemma might be viewed from the point of Heegaard-Floer

homology. In particular, the long exact sequence for integer surgeries may be stated

· · · −→ ĤF(S3
m(K)) −→ ĤF(S3

m+n(K)) −→
⊕

n

ĤF(S3) −→ · · ·

where ⊕
n

ĤF(S3) ∼= F[Z/nZ]

when viewed with twisted coefficients (c.f. (Ozsváth and Szabó, 2008, Theorem 3.1)).

We have given an analogous statement in terms of the Khovanov homology of the asso-

ciated branch sets in the case when K is strongly invertible, a fact that is particularly

interesting in light of Theorem 3.12.

Before turning to consequences of Lemma 5.1, we note that a similar statement is forced

to exist for negative surgeries. Indeed, consider K̃h(τ(m − n)) for any integer m, and

positive integer n. Setting m′ = m− n we have that

K̃h(τ(m′)) ∼= K̃h(τ(m− n))
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and

K̃h(τ(m)) ∼= K̃h(τ(m′ + n))

∼= H∗

(
K̃h(τ(m′)) → F[Z/nZ]

)
∼= H∗

(
K̃h(τ(m− n)) → F[Z/nZ]

)
.

It follows that:

Lemma 5.3. For any integer m, and positive integer n,

K̃h(τ(m− n)) ∼= H∗

(⊕
n K̃h(τ(1

0)) → K̃h(τ(m))
)

as a relatively Z⊕ Z-graded group, where the integer m may be interpreted as a change

of framing. More precisely, there exist an explicit constants x′ and y′ (different than

above) and an identification

n−1⊕
q=0

K̃h(τ(1
0))[x′, y′][0, q] ∼= F[Z/nZ]

so that

K̃h(τ(m− n)) ∼= H∗

(
F[Z/nZ] → K̃h(τ(m))

)
Remark 5.4. In fact, it should be immediately clear that in this case the group

n−1⊕
q=0

K̃h(τ(1
0))[x′, y′][0, q] ∼= F[q−1]/q−n ∼= F[Z/nZ]

must lie in grading δ − 1 relative to the group

n−1⊕
q=0

K̃h(τ(1
0))[x + 1

2 , y − 1
2 ][0, q] ∼= F[q]/qn ∼= F[Z/nZ]

of Lemma 5.1 in grading δ. Alternatively, Lemma 5.3 may be proved by an argument

nearly identical to the argument of Lemma 5.1, up to renaming constants.
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5.2 Width stability.

There are two essential consequences that we derive from Lemma 5.1. Similar properties

exist for branch sets associated to negative surgeries, although we will not state these,

opting instead to pass to positive surgeries on the mirror to avoid negative coefficients.

Lemma 5.5. For N >> 0 the exact sequence for K̃h(τ(N + 1)) splits so that, ignoring

gradings,

K̃h(τ(N + 1)) ∼= K̃h(τ(N))⊕ F.

Proof. Let N = m and n = 1 in the notation of Lemma 5.1, so that

K̃h(τ(N + 1)) ∼= H∗

(
K̃h(τ(N)) → K̃h(τ(1

0))
)

On the other hand, with m = 0 and n = N + 1 we have that

K̃h(τ(N + 1)) ∼= H∗

(
K̃h(τ(0)) → F[q]/qN+1

)
.

Since the differential preserves the secondary grading, for N >> 0 the generator repre-

sented by qN cannot be in the image of the differential.

Lemma 5.6. Up to overall shift, the generators K̃h(τ(1
0)) ∼= F, when they survive in

homology, are all supported in a single δ-grading.

Proof. Immediate from the identification with the truncated polynomial ring in Lemma

5.1.

As a result of Lemma 5.5, the width of the τ(n) may be calculated for all n once some

finite collection of the values is known. Moreover, these quantities must be bounded, in

light of Lemma 5.6.

Definition 5.7. For a given strongly invertible knot and compatible associated quotient
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tangle, define

wmax = max
n∈Z

{w(τ(n))}

and

wmin = min
n∈Z

{w(τ(n))} .

Lemma 5.8. Suppose wmin = w(τ(N)) for |N | >> 0. Then either wmin = 1 and

T = (B3, τ) is the tangle associated to the trivial knot, or wmin > 1 in which case

wmin = wmax.

Proof. First suppose wmin = 1, so that w(τ(N)) = 1 for all |N | sufficiently large.

Then by Proposition 3.16, S3
±N (K) = Σ(S3, τ(±N)) must be an L-space for all N

sufficiently large. However, by Proposition 3.36, K must be the trivial knot (and hence

τ(0) ' t ).

Now suppose that wmin > 1 for |N | >> 0, and choose m sufficiently negative so that

w(τ(m)) = wmin. Then we have

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
for all n > 0. In particular, since wmin = w(τ(m + n) for n sufficiently large, it must

be that Supp(F[Z/nZ]) ⊂ Supp(K̃h(τ(m)). As a result, a decrease in width would

contradict our assumption that w(τ(m)) is minimal, hence wmin = wmax.

Lemma 5.9. The maximum and minimum widths differ by at most 1. That is, either

wmax = wmin or wmax = wmin + 1.

Proof. First notice that the statement holds for the tangle associate to the quotient of

the trivial knot by Lemma 5.8, since w(τ(0)) = w( t ) = 2.

Assuming then that K is non trivial, without loss of generality we may suppose that

wmin = w(τ(N)) for N >> 0 and that wmax = w(τ(N)) for N << 0. Now choosing

m sufficiently negative in the notation of Lemma 5.1 we have that wmax = w(τ(m)).
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Further,

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
for every n > 0. Since wmin = w(τ(m + n)) for some n, the group Fn ∼= F[Z/nZ] must

be in a fixed grading supported by K̃h(τ(m)). Therefore, if

K̃h(τ(m)) ∼=
⊕

δ

Fbδ ∼= Fb1 ⊕ Fb1 ⊕ · · · ⊕ Fbwmax

then since the differential of the mapping cone raises δ-grading by one we have that

wmax = wmin unless

K̃h(τ(m + n)) ∼= H∗

 Fb1

##GGG
GG

Fb2 · · · Fbwmax

Fn


wherein this case the possibility arises for wmax = wmin + 1.

Remark 5.10. We remark that, whenever wmax = wmin + 1 for a tangle associated to

a non-trivial knot in S3, there is a unique ` for which w(τ(`)) and w(τ(` + 1)) differ.

Moreover, we may assume up to taking mirrors that ` ≥ 0.

We note that, having fixed ` ≥ 0 whenever wmax = wmin + 1, the width either expands

or decays. More precisely, the width expands whenever

K̃h(τ(n)) ∼= H∗

 Fb1 Fb2 · · · Fbwmin

%%KKKKK

Fn


and the possibility for width decay arises whenever

K̃h(τ(n)) ∼= H∗

 Fb1

##GGG
GG

Fb2 · · · Fbwmax

Fn


for m = 0 in the notation of Lemma 5.1.

For example, Berge knots (chosen so that the lens space surgeries are positive) give rise
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to a family of tangles for which the width decays (c.f. Proposition 4.23).

5.3 On determinants and resolutions

In the arguments that follow, we will rely heavily on resolutions of terminal crossings

(see Definition 4.14) in branch sets τ(p
q ) for which S3

p/q(K) = Σ(B3, τ(p
q )). As such, we

remark that

det(τ(p
q )) = |H1(S3

p/q(K); Z)| = p

for any p
q ≥ 0 (in all cases, we deal with negative surgeries by passing to the mirror

image). Moreover if τ(p0

q0
) and τ(p1

q1
) are the links resulting from resolution of the

terminal crossing, then

det(τ(p
q )) = p = p0 + p1 = det(τ(p0

q0
)) + det(τ(p1

q1
))

by applying Property 4.13.

As a result, K̃h(τ(p
q )) may be studied by applying Proposition 2.14 to the resolutions

τ(p0

q0
) and τ(p1

q1
) whenever p

q > 1. In the case p
q ∈ (0, 1) the same arguments work

by using Proposition 2.15 when treating continued fractions of length r = 2: here

det(τ(p0

q0
)) = det(τ(0)) = 0.

By Lemma 5.1 we have that

K̃h(τ(n)) ∼= H∗

(
K̃h(τ(0)) → F[Z/nZ]

)
for a specific identification of

⊕
n K̃h(τ(1

0)) ∼= F[Z/nZ] as a graded group. As a result,

K̃hσ(τ(n)) ∼= H∗

(
K̃hσ(τ(n− 1)) → K̃hσ(τ(1

0))
)

whenever n > 1, and

K̃hσ(τ(1)) ∼= H∗

(
K̃h(τ(0))[−1

2 ] → K̃hσ(τ(1
0))
)
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where K̃hσ(τ(1
0)) = K̃h(τ(1

0)) since the signature of the trivial knot is 0. In either case,

Supp
(
K̃hσ(τ(n))

)
⊆ Supp

(
K̃hσ(τ(n + 1))

)
or

Supp
(
K̃hσ(τ(n + 1))

)
⊆ Supp

(
K̃hσ(τ(n))

)
as absolutely graded groups (where the fixed shifts are adjusted accordingly by [−1

2 ]

in the case of τ(0)). Notice that these inclusions are equalities whenever w(τ(n)) =

w(τ(n+1)), so that the inclusions are only relevant in the case when the width changes

by one.

5.4 An upper bound for width

Proposition 5.11. Let K be a strongly invertible knot in S3, with canonical associated

quotient tangle T = (B3, τ). Then w(τ(p
q )) is bounded above by wmax for all p

q ∈ Q.

Proof. The proof is similar to that of Proposition 4.23 establishing the upper bound

of 2 for the width of a branch set associated to surgery on a Berge knot. Again, we

suppose without loss of generality that p
q ≥ 0, and proceed in 2 cases.

Case 1: 1 ≤ p
q

By its definition, wmax provides the upper bound for w(τ(n)) for any n. This pro-

vides a base for induction in r, the length of the continued fraction representation
p
q = [a1, a2, . . . , ar].

First consider the case p
q = [a1, 2]. Here we have

det(p
q ) = p = p0 + p1 = a1 + a1 + 1 = det(p0

q0
) + det(p1

q1
)

where where p0

q0
= [a1] corresponds to the 1-resolution of the terminal crossing, and

p1

q1
= [a1, 1] = [a1 +1] corresponds to the 0-resolution of the terminal crossing. In either
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case w(p0

q0
), w(p1

q1
) ≤ wmax, and by applying Proposition 2.14 we have

K̃hσ(τ(p
q )) ∼= H∗

(
K̃hσ(τ(p1

q1
)) → K̃hσ(τ(p0

q0
))
)

.

Moreover, according to Section 5.3 we have that either

Supp
(
K̃hσ(τ(p1

q1
))
)
⊆ Supp

(
K̃hσ(τ(p0

q0
))
)

or

Supp
(
K̃hσ(τ(p0

q0
))
)
⊆ Supp

(
K̃hσ(τ(p1

q1
))
)

as a consequence of Lemma 5.1. Therefore,

w(τ [a1, 2]) = w(τ(2a1+1
2 ))

≤ max{w(τb2a1+1
2 c), w(τd2a1+1

2 e)}

= max{w(τ(a1)), w(τ(a1 + 1))}

≤ wmax.

The same statement holds for p
q = [a1, a2]. By iterating Proposition 2.14 we have

K̃hσ(τ(p0

q0
)) // K̃hσ(τ(p

q ))

��

K̃hσ(τ(p0

q0
)) // K̃hσ(τ(p′1

q′1
))

��
...
��

K̃hσ(τ(p1

q1
))

where the connecting homomorphisms have been omitted. Once again, as a consequence
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of supports we conclude that

w(τ [a1, a2]) = w(τ(a1a2+1
2 ))

≤ max{w(τba1a2+1
2 c), w(τda1a2+1

2 e)}

= max{w(τ(a1)), w(τ(a1 + 1))}

≤ wmax.

Now for induction in r, given p
q = [a1, a2, . . . , ar−1] the inductive hypothesis is that

w(τ(p
q )) ≤ wmax and one of

Supp
(
K̃hσ(τ [a1, a2, . . . , ar−1])

)
⊆ Supp

(
K̃hσ(τ [a1, a2, . . . , ar−1 + 1]))

)
or

Supp
(
K̃hσ(τ [a1, a2, . . . , ar−1 + 1]))

)
⊆ Supp

(
K̃hσ(τ [a1, a2, . . . , ar−1])

)
holds.

This being the case, we claim that

w(τ [a1, a2, . . . , ar−1, ar]) ≤ max {w(τ [a1, a2, . . . , ar−1]), w(τ [a1, a2, . . . , ar−1 + 1])} .

By resolving the terminal crossing of τ(p
q ) and applying Proposition 2.14

K̃hσ(τ(p
q )) ∼=


H∗

(
K̃hσ(τ(p0

q0
)) → K̃hσ(τ(p1

q1
))
)

r even

H∗

(
K̃hσ(τ(p1

q1
)) → K̃hσ(τ(p0

q0
))
)

r odd

so that in either case w(τ(p
q )) ≤ max{w(τ(p0

q0
)), w(τ(p1

q1
))} if ar = 2. By induction in ar

we have that

w(τ [a1, a2, . . . , ar−1, ar]) ≤ max{w(τ [a1, a2, . . . , ar+1]), w(τ [a1, a2, . . . , ar−1 + 1])}
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by applying Property 4.13 together with the induction hypothesis on supports.

As a result, by induction in length we have that

w(τ(p
q )) ≤

{
w(τbp

q c), w(dp
q e)
}
≤ wmax,

concluding the proof in this case.

Case 2: 0 < p
q < 1

The proof in this case follows the same lines as the previous case, and differs only in

passing from the case r = 2 to r = 1. Indeed, the argument here is identical, once

we replace the use of Proposition 2.14 is with that of its degenerative counterpart,

Proposition 2.15. This is due to the fact that, while the determinants remain additive

under resolution, det(τbp
q c) = 0 in this case.

To see that this is so, consider once again the case p
q = [a1, 2] = [0, 2]. By applying

Proposition 2.15 we have

K̃hσ(τ(p
q )) ∼= H∗

(
K̃hσ(τ(p1

q1
))[−1

2 ] → K̃hσ(τ(p0

q0
))
)

.

Moreover, according to Section 5.3 we have that either

Supp
(
K̃hσ(τ(p1

q1
))[−1

2 ]
)
⊆ Supp

(
K̃hσ(τ(p0

q0
))
)

or

Supp
(
K̃hσ(τ(p0

q0
))
)
⊆ Supp

(
K̃hσ(τ(p1

q1
))[−1

2 ]
)
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as a consequence of Lemma 5.1. Therefore,

w(τ [a1, 2]) = w(τ(2a1+1
2 ))

≤ max{w(τb2a1+1
2 c), w(τd2a0+1

2 e)}

= max{w(τ(a1)), w(τ(a1 + 1))}

≤ wmax.

The same statement holds for p
q = [a1, a2]. By iterating Proposition 2.15 as in the

previous case so that

w(τ [a1, a2]) = w(τ(a1a2+1
2 ))

≤ max{w(τba1a2+1
2 c), w(τda1a2+1

2 e)}

= max{w(τ(a1)), w(τ(a1 + 1))}

≤ wmax.

Remark 5.12. Case 2, when p
q ∈ (0, 1), will be present in all of the arguments that

follow. However, in every setting this case simply amounts to replacing Proposition 2.14

with Proposition 2.15 in passing from half-integer (continued fractions of length 2) to

integer surgeries, as in the above proof. Thus, we will restrict, without loss of generality,

to the case p
q ≥ 1 in the arguments below.

5.5 A lower bound for width

Proposition 5.13. Let K be a strongly invertible knot in S3, with canonical associated

quotient tangle T = (B3, τ). If wmax = wmin then w(τ(p
q )) is bounded below by wmin for

all p
q ∈ Q.

Proof. Without loss of generality, assume that p
q ≥ 1.
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Since wmax = wmin = w, we have that w = w(τ(n)) for every n ∈ Z. In particular,

Supp
(
K̃hσ(τ(n + 1))

)
= Supp

(
K̃hσ(τ(n))

)
as a consequence of Lemma 5.1. Thus, applying Proposition 2.14

K̃hσ(τ [a1, 2]) ∼= H∗

(
K̃hσ(τ(a1)) → K̃hσ(τ(a1 + 1))

)
so that if K̃h(τ(a1)) ∼= Fb1 ⊕ · · · ⊕ Fbw and K̃h(τ(a1 + 1)) ∼= Fb′1 ⊕ · · · ⊕ Fb′w (note that

bi 6= b′i for precisely one value 1 ≤ i ≤ w) then

K̃h(τ [a1, 2]) ∼= H∗

 Fb1

##FFFF Fb2

""EE
EE

E
· · ·

##FF
FF

F Fbw

Fb′1 Fb′2 · · · Fb′w


as a relatively graded group, since the differential of the mapping cone raises δ-grading

by 1. Notice in particular that b∗1 ≥ b′1 and b∗w ≥ bw for K̃h(τ [a1, 2]) = Fb∗1 ⊕ · · · ⊕ Fb∗w ,

so that w(τ [a1, 2]) = w

Similarly, for p
q = [a1, a2] in general, we may iteratively apply Proposition 2.14 a2 − 1

times to the same end:

K̃h([a1, a2]) ∼= H∗

H∗

(

Fb1 Fb2 · · · Fbw

...
...

...

Fb1

##FFFF Fb2

""EE
EE

E
· · ·

##FF
FF

F Fbw

Fb′1 Fb′2 · · · Fb′w

)


so that b∗1 ≥ b′1 and b∗w ≥ bw for K̃h(τ [a1, a2]) = Fb∗1 ⊕ · · · ⊕ Fb∗w , and once again

w(τ [a1, a2]) = w.

To complete the proof then, we induct in r with the assumption that w(τ(p
q )) = w for



117

all p
q = [a1, . . . , ar−1], and that

Supp
(
K̃hσ(τ [a1, a2, . . . , ar−1])

)
= Supp

(
K̃hσ(τ [a1, a2, . . . , ar−1 + 1]))

)
holds.

This being the case, we claim that

w(τ [a1, a2, . . . , ar−1, ar]) ≤ max {w(τ [a1, a2, . . . , ar−1]), w(τ [a1, a2, . . . , ar−1 + 1])} .

Indeed, when ar = 2 we have that

K̃hσ(τ(p
q )) ∼=


H∗

(
K̃hσ(τ(p0

q0
)) → K̃hσ(τ(p1

q1
))
)

r even

H∗

(
K̃hσ(τ(p1

q1
)) → K̃hσ(τ(p0

q0
))
)

r odd

by applying Proposition 2.14 so that in either case w(τ(p
q )) = w(τ(p0

q0
)), w(τ(p1

q1
)) since

the corresponding groups have the same support. By induction in ar we have that

w(τ [a1, a2, . . . , ar−1, ar]) = w(τ [a1, a2, . . . , ar+1]), w(τ [a1, a2, . . . , ar−1 + 1])

as before, by applying the induction hypothesis on supports.

As a result, by induction in length we have that

w(τ(p
q )) = w,

concluding the proof.

Combining Proposition 5.13 with Proposition 5.11 we have immediately that

w(τ(−)) : Q → N

takes a single value w ∈ N when w = wmax = wmin, where T = (B3, τ) is the canonical



118

representative for the quotient tangle associated to a strongly invertible knot in S3.

5.6 Expansion and decay

By Remark 5.10, if wmax = wmin+1 then there is a unique value `, which we may assume

is positive, for which either wmin = w(τ(`)) < w(τ(` + 1)) = wmax (width expansion) or

wmax = w(τ(`)) > w(τ(` + 1)) = wmin (width decay).

In each setting, we establish a sufficient (though certainly not necessary) condition for

which wmin still provides a lower bound for w(τ(p
q )).

Definition 5.14. T is expansion generic if bk > 1 where

K̃h(τ(`)) ∼= Fb1 ⊕ · · · ⊕ Fbk

so that wmin = k and

K̃h(τ(` + 1)) ∼= Fb1 ⊕ · · · ⊕ Fbk ⊕ F

so that wmax = k + 1, where k > 0.

Definition 5.15. T is decay generic if b1 > 1 where

K̃h(τ(`)) ∼= F⊕ Fb1 ⊕ · · · ⊕ Fbk

so that wmax = k + 1 and

K̃h(τ(` + 1)) ∼= Fb1 ⊕ · · · ⊕ Fbk

so that wmin = k, where k > 0.

Both of these notions are well defined, according Lemma 5.9.

Notice that if T is expansion generic, then T ? is decay generic, and vice versa. These

both seem to be stronger conditions than necessary, however genericity (in each sense)
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turns out to be the rule rather than the exception when we turn to applications of

homological width.

Proposition 5.16. If T is expansion generic then w(τ(p
q )) is bounded below by wmin

for all p
q ∈ Q.

Proof. Let w(τ(`)) = k = wmin and w(τ(` + 1)) = k + 1 = wmax. First notice that for
p
q /∈ [`, `+1] the proof proceeds exactly as in the proof of Proposition 5.13. Thus we are

left to consider the case when p
q ∈ [`, ` + 1]. Without loss of generality, we may assume

that ` > 0: if this is not the case, the argument below goes through with Proposition

2.15 replacing Proposition 2.14 where necessary, as is now familiar.

Now when [a1, a2] = [`, 2], we have that

K̃hσ(τ [`, 2]) ∼= H∗

(
K̃hσ(τ(`)) → K̃hσ(τ(` + 1))

)
by resolving the terminal crossing and applying Proposition 2.14. By applying Lemma

5.1, notice that

Supp
(
K̃hσ(τ(`))

)
⊆ Supp

(
K̃hσ(τ(` + 1))

)
gives

K̃h(τ [`, 2]) ∼= H∗

 Fb1

##GGGG Fb2

""FF
FF

F
· · ·

""FF
FF

F Fbk

!!DD
DD

D

Fb1 Fb2 · · · Fbk F


so that w(τ [`, 2]) ≥ k due to expansion genericity (bk > 1), since this ensures that

groups in gradings 1 and k survive in homology.

Now consider the case p
q = [`, 3]. Again, we have that

K̃hσ(τ [`, 3]) ∼= H∗

(
K̃hσ(τ(`)) → K̃hσ(τ [`, 2]))

)
∼= H∗

(
K̃hσ(τ(`)) → H∗

(
K̃hσ(τ(`)) → K̃hσ(τ(` + 1))

))
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so that

K̃h(τ [`, 3]) ∼= H∗

 Fb1

##FFFF Fb2

""EE
EE

E
· · ·

""FF
FF

F Fbk

""EEE
EE

Fb′1 Fb′2 · · · Fb′k Fε


where ε = 0, 1 arising from

K̃h(τ [`, 2]) ∼= Fb′1 ⊕ Fb′2 ⊕ · · · ⊕ Fb′k ⊕ Fε.

Note that b′k > 0, since w(τ [`, 2]) ≥ k. If ε = 0 then groups survive in degrees 1 and k

so the width is k; in the case ε = 1, w(τ [`, 3]) ≥ k due to expansion genericity as before.

Proceeding in this way by iterating Proposition 2.14, we obtain the desired result for

all τ(p
q ) when p

q = [`, a2]. Notice that either

Supp
(
K̃hσ(τ [`, a2])

)
= Supp

(
K̃hσ(τ [`, a2 + 1))

)
,

in which case the proof concludes along the lines of the proof of Proposition 5.13, or

Supp
(
K̃hσ(τ [`, a2])

)
⊆ Supp

(
K̃hσ(τ [`, a2 + 1))

)
.

In the case of the latter, we remark that K̃h(τ [`, a2]) ∼= Fb1⊕· · ·⊕Fbk and K̃h(τ [`, a2]) ∼=

Fb′1 ⊕ · · · ⊕ Fb′k ⊕ Fb′k+1with bk > b′k+1.

We now proceed by induction, assuming the result holds for continued fractions of length

r − 1, with the support the Khovanov homology of the zero resolution of the terminal

crossing included in the support of the Khovanov homology of the one resolution (once

the gradings have been shifted by the signatures, according to Proposition 2.14).

Now for p
q = [`, a2, . . . , ar−1, 2],

K̃hσ(τ(p
q )) ∼=


H∗

(
K̃hσ(τ(p0

q0
)) → K̃hσ(τ(p1

q1
))
)

r even

H∗

(
K̃hσ(τ(p1

q1
)) → K̃hσ(τ(p0

q0
))
)

r odd
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so that

K̃h(τ(p
q )) ∼= H∗

 Fb1

""FFF
FF

Fb2

""EE
EE

E
· · ·

""EE
EE

E Fbk

$$III
II

Fb′1 Fb′2 · · · Fb′k Fb′k+1


where bk > b′k+1. Therefore, since there must be non-trivial groups in the first and

kth gradings, w(τ(p
q )) ≥ k. To conclude the proof then it remains only to iterate this

argument in ar, as in the case r = 2.

Proposition 5.17. If T is decay generic then w(τ(p
q )) is bounded below by wmin for all

p
q ∈ Q.

Proof. The proof is almost identical to the proof of Proposition 5.16.

Let w(τ(`)) = k + 1 = wmax and w(τ(` + 1)) = k = wmin. Again, notice that for
p
q /∈ [`, `+1] the proof proceeds exactly as in the proof of Proposition 5.13. Thus we are

left to consider the case when p
q ∈ [`, ` + 1]. Without loss of generality, we may assume

that ` > 0.

Now when [a1, a2] = [`, 2] is a half-integer, we have that

K̃hσ(τ [`, 2]) ∼= H∗

(
K̃hσ(τ(`)) → K̃hσ(τ(` + 1))

)
by resolving the terminal crossing and applying Proposition 2.14. Notice however that

since

Supp
(
K̃hσ(τ(` + 1))

)
⊆ Supp

(
K̃hσ(τ(`))

)
this gives

K̃h(τ [`, 2]) ∼= H∗

 F
!!CC

CC
C Fb1

##GGGG Fb2

""FF
FF

F
· · ·

""FF
FF

F Fbk

Fb1 Fb2 · · · Fbk


so that w(τ [`, 2]) ≥ k due to expansion genericity (b1 > 1), since this ensures that

groups in gradings 1 and k survive in homology.

The conclusion then follows by induction in the length of the continued fraction associ-



122

ated to p
q , assuming the inclusion of supports as before.

Collecting the above results, we have that

w(τ(−)) : Q → N

takes values [wmin, wmin +1] ⊂ N when in the decay or expansion generic setting, where

T = (B3, τ) is the canonical representative for the quotient tangle associated to a

strongly invertible knot in S3.

5.7 Lee’s result, revisited

We now have all the material in place to see why 2-bridge knots have thin Khovanov

homology, a result due originally to Lee, and key component of Theorem 4.24.

Since two-bridge knots arise as the branch sets of lens spaces, we need to consider

surgery on the trivial knot in S3; the associated quotient tangle is rational, and the

canonical representative is (B3, ) since det(τ(0)) = det( t ) = 0 (equivalently,

S2 × S1 = Σ(S3, t )).

Since both τ(1
0) and τ(1) are the trivial knot, applying Lemma 5.1 we have that

F ∼= H∗(K̃h(τ(0)) → F).

Recall that K̃h(τ(0)) ∼= F ⊕ F as a relatively Z-graded group. Now it follows that the

branch sets corresponding to positive integer surgery have Khovanov homology

K̃h(τ(n)) ∼= H∗(K̃h(τ(0)) → F[Z/nZ]) ∼= Fn,

hence w(τ(n)) is thin for all n 6= 0.2

2Of course, there is enough information here to work out fKh(τ(n)) completely as an absolutely
bi-graded group.
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Without loss of generality, we consider K̃h(τ(p
q )) for p

q > 0. In fact, τ [0, a2, a3, . . . , ar] '

τ [a3, . . . , ar], so we need only consider p
q ≥ 1. Now it is a quick application of Proposition

5.11 to see that τ(p
q ) is a thin link, for all p

q 6= 0, since τ(n) is thin for all n 6= 0.

Note that in constructing 2-bridge links in this way, we recover Schubert’s normal form

for this class (Schubert, 1956).
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CHAPTER VI

SURGERY OBSTRUCTIONS FROM KHOVANOV HOMOLOGY.

We are now in a position to assemble the material developed to this point into obstruc-

tions to certain exceptional surgeries. In particular, we give obstructions to lens space

surgeries and finite fillings from Khovanov homology, and we give a range of calculations

as illustration of this application of Khovanov homology.

While these examples are essentially the content of (Watson, 2008b), the obstructions

developed here represent a strengthening of the results found in that work. In particular,

the results of this chapter do not depend on the cyclic surgery theorem (Theorem 1.25)

or the related results of Boyer and Zhang (Theorem 1.26 and Theorem 1.27).

6.1 Width obstructions

Theorem 6.1. Let K ↪→ S3 be strongly invertible with canonical associated quotient

tangle T = (B3, τ). Then w(τ(p
q )) > 1 implies that S3

p/q(K) is not a lens space, and

w(τ(p
q )) > 2 implies that S3

p/q(K) has infinite fundamental group.

Proof. For w > 1 the statement follows from Theorem 4.24; for w > 2 the statement

follows from Theorem 4.25.

Our aim is to show that this is an effective obstruction by applying the results of Chapter

5.
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Let T = (B3, τ) be the canonical representative for the tangle associated to a strongly

invertible knot in S3. Recall that τ(1
0) is the trivial knot, and

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
for some explicit identification

F[Z/nZ] ∼= F[q]/qn ∼= K̃h(τ(1
0))[x, y][0, q]

as a graded F-vector space. Here, n > 0 and the fixed grading shift depends on the

tangle, and the integer m (c.f. Lemma 5.1). If

K̃h(τ(m)) ∼= Fb1 ⊕ · · · ⊕ Fbk

as a relatively Z-graded F-vector space, so that w(τ(m)) = k, then the graded vector

space F[Z/nZ] is added to some fixed (relative) grading δ+ for 1 ≤ δ+ ≤ k + 1.

In the situation that the width decays (c.f Definition 5.15), δ+ = 2, and in the situation

that width expands, δ+ = k + 1 (c.f. Definition 5.14). If the width neither decays nor

expands then the tangle will be referred to as width stable.

Definition 6.2. The tangle T = (B3, τ) is generic if it is width stable, or if the width

decays (respectively, expands) then it is decay generic as in Definition 5.15 (respectively

expansion generic as in Definition 5.14).

A much stronger form of genericity exists, and will be useful in application.

Proposition 6.3. If for each δ-grading supporting K̃h(τ(m)), for any m, there is a

q-grading for which rk K̃h
δ
(τ(m)) > rk K̃h

δ

q(τ(m)) > 1, then the associated quotient

tangle is generic.

Proof. This is immediate from Lemma 5.1: since the graded vector space F[Z/nZ] has a

unique generator in each secondary grading q, the condition rk K̃h
δ

q(τ(m)) > 1 ensures
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that bδ 6= 0 in K̃h(τ(m + n)) ∼=
⊕k

δ=1 Fbδ , for all n. As a result, the tangle is either

width stable, or it is expansion generic as a result of rk K̃h
δ
(τ(m)) > rk K̃h

δ

q(τ(m)).

Our main results then are the following:

Theorem 6.4. Let K ↪→ S3 be strongly invertible with generic associated quotient

tangle. Then wmin > 1 implies that K does not admit non-trivial lens space surgeries.

Moreover, determining wmin is a finite check.

Theorem 6.5. Let K ↪→ S3 be strongly invertible with generic associated quotient tan-

gle. Then wmin > 2 implies that K does not admit non-trivial finite fillings. Moreover,

determining wmin is a finite check.

Remark 6.6. In practice, one group K̃h(τ(m)) is enough to determine wmin and apply

these obstructions.

In the absence of the genericity hypothesis, the width is still a useful obstruction: In

light of Theorem 1.25 it is enough to check the integer fillings of K when the question

of lens space surgeries is of interest. Similarly, in the case of finite fillings only the

integer and half-integer surgeries need to be considered in light of Theorem 1.26. In

practice, however, genericity is easy to check and seems to be a relatively standard

property. Indeed, the only example of a tangle failing this condition that this author

has encountered in examples is given by rational tangles, that is, the tangle associated

to the trivial knot. In the generic setting (see examples given below), it is particularly

interesting that Khovanov homology is able to give useful surgery obstructions, without

relying on these powerful theorems.

6.2 On constructing quotients

With the above in place, calculating width obstructions is straightforward, consisting

of essentially three steps: realize a strong inversion on a knot, construct the quotient,

and compute the Khovanov homology of the branch set for some integer surgery on the
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knot. The final step is direct calculation and, assuming the first step is done the second

presents the only challenge. It is not difficult to construct this quotient, though requires

some patience and attention.

Figure 6.1 The local behaviour for quotients of strongly invertible knot complements.
Notice that the quotient of a crossing across the axis of symmetry gives rise to a clasp
between the image of the fixed point set and the quotient of the boundary.

To determine a fundamental domain for the action of the fixed involution, it suffices to

‘cut’ the knot complement along the axis of symmetry, and then apply the rules given in

Figure 6.1. This is best displayed in examples (see below), but is expanded on in detail

in (Bleiler, 1985; Montesinos and Whitten, 1986; Zimmermann, 1997), for example.

6.3 A first example: surgery on the figure eight

It is well known that the figure eight knot K = 41 does not admit lens space surgeries.

In fact, Thurston classified the non-hyperbolic fillings of S3 r ν(K) and showed that,

aside from the trivial surgery, they all have infinite fundamental group (Thurston, 1980).

That K does not admit (non-trivial) lens space surgeries has been reproved using the
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machinery of SU(2) representation spaces (Kirk and Klassen, 1990; Klassen, 1991),

essential laminations (Delman, 1995), character varieties (Tanguay, 1996) and most

recently, Heegaard-Floer homology (Ozsváth and Szabó, 2005b). As a first example of

the width obstructions developed here, we endeavour to add Khovanov homology to

this list.

∼=

Figure 6.2 The strong inversion on the figure eight (left); isotopy of a fundamental
domain (centre); and two representatives of the associated quotient tangle (right).

K is a strongly invertible knot, and this symmetry is shown in Figure 6.2 together with

the associated quotient tangle. We have given two equivalent views of the associated

quotient tangle. The first of these shows that the branch sets for integer surgeries may
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be expressed as closed 3-braids. For

βn = σ−1
1 σ−2

2 σ−2
1 σ−2

2 σ−2
1 σ−4+n

2

we have that τ(n) ' βn, the closure of βn. The Khovanov homology K̃h(τ(−1)),

K̃h(τ(0)) and K̃h(τ(+1)) is given in Figure 6.3 (in particular, χ
(
K̃h(τ(0))

)
= det(τ(0)) =

0). Notice that wmin = 2 and that the tangle is decay generic. It follows at once that

K does not admit lens space surgeries, and it seems worth pointing out that this result

could have been inferred simply by inspection of the single Khovanov homology group

K̃h(τ(0)).

1

1

1
1

1

1

1
1

1

1

1
1
1
1

1

1

1
1

1

1
1
1
1

1

1

1
1

1

Figure 6.3 The canonical representative for the associated quotient tangle T = (B3, τ)
of the figure eight, and the reduced Khovanov homology groups K̃h(τ(−1)), K̃h(τ(0))
and K̃h(τ(1)) (from left to right). The δ+ grading has been highlighted, in accordance
with Lemma 5.1 setting m = 0.

More generally, we may use Lemma 5.1 to calculate:

Proposition 6.7.

K̃h(τ(n)) ∼=


F4+n⊕ F4 n > 0

F⊕ F5 ⊕ F4 n = 0

F|n| ⊕ F4 ⊕ F4 n < 0

Proof. The grading δ+ is identified in Figure 6.3. By calculating that K̃h(τ(−2)) ∼=
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F2 ⊕ F4 ⊕ F4, Lemma 5.1, together with the groups

K̃h(τ(−1)) ∼= F⊕ F4 ⊕ F4

K̃h(τ(0)) ∼= F⊕ F5 ⊕ F4

K̃h(τ(1)) ∼= F5 ⊕ F4

forces the result.

In fact, we have enough to recover Thurston’s result:

Theorem 6.8. Khovanov homology detects that the figure 8 admits no finite fillings.

Proof. First notice that w(τ(n)) = 3 for n ≤ 0. As a result, a finite filling cannot

arise by negative surgery on the figure eight. However, since the figure eight knot is

amphicheiral, the same must be true for positive surgeries.

Remark 6.9. This result also follows quickly from Heegaard-Floer homology by applying

Theorem 3.22, since the figure eight is alternating and hyperbolic, together with the fact

that manifolds with finite fundamental group are L-spaces. Note that the Alexander

polynomial for this knot is −t−1 + 3− t (c.f. Theorem 3.21).

6.4 Some pretzel knots that do not admit finite fillings

According to Mattman (Mattman, 2000), it is unknown if the (−2, p, q)-pretzel knots

admit fillings with finite fundamental group for q ≥ p ≥ 5. When p = q = 5 we have

the following.

Theorem 6.10. The (−2, 5, 5)-pretzel knot does not admit finite fillings.

Proof. We begin by noting that the (−2, 5, 5)-pretzel knot, K, is strongly invertible in

two ways as indicated in Figure 6.4. We will make use of the inversion indicated by the
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Figure 6.4 Two strong inversions on the (−2, 5, 5)-pretzel knot.

Figure 6.5 Isotopy of the fundamental domain for a strong inversion on the (−2, 5, 5)-
pretzel knot. Notice that the resulting tangle has the property that integer closures are
representable by closed 4-braids.

solid vertical line; the associated quotient tangle is calculated in Figure 6.5. Notice that

the associated quotient tangle in this case gives rise to an obvious collection of 4-braids

giving the branch sets for integer fillings. Setting

βn = σ−1
2 σ−1

3 σ1σ2σ
14+n
1 σ2σ1σ

−1
3 σ−1

2 (σ−1
2 σ−1

3 σ−1
1 σ−1

2 )3

we have τ(n) = βn by verifying that K̃h(τ(0)) ∼= F16 ⊕ F20 ⊕ F4 so that det(τ(0)) = 0.

The homologies of τ(n) for n = −18,−17,−16,−15,−14 are given in Figure 6.6. This
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Figure 6.6 K̃h(τ(n)) for n = −18,−17,−16,−15,−14 (from left to right).

data is enough to infer that

K̃h(τ(n)) ∼=


F−n ⊕ F4 ⊕ F4 n < −16

F17 ⊕ F5 ⊕ F4 n < −16

F16 ⊕ F20+n ⊕ F4 n > −16

as relatively Z-graded groups. In particular, wmin = wmax = 3 and the associated

quotient tangle is generic.

The result now follows from Theorem 6.5.

Considering the same involution on the (−2, p, p)-pretzel knot Kp for all p ≥ 5 we have

that, in terms of the canonical associated quotient tangle, τp(n) = βn,p where

βn,p = σ−1
2 σ−1

3 σ1σ2σ
14+4( p−5

2
)+n

1 σ2σ1σ
−1
3 σ−1

2 (σ−1
2 σ−1

3 σ−1
1 σ−1

2 )p−2

= σ−1
2 σ−1

3 σ1σ2σ
4+2p+n
1 σ2σ1σ

−1
3 σ−1

2 (σ−1
2 σ−1

3 σ−1
1 σ−1

2 )p−2

so that S3
n(Kp) ∼= Σ(S3, τp(n)). Notice that this expression changes only the number of

double-strand full-twists in the associated quotient tangle (see Figure 6.5). From this
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expression, we were able to calculate K̃h(τp(−4−2p)) for p odd in the range 5 ≤ p ≤ 31.1

These calculations yield generic tangles in each case, with w(τp(−4− 2p)) = p− 2, from

which we conclude:

Theorem 6.11. The (−2, p, p)-pretzel knots do not admit finite fillings for 5 ≤ p ≤ 31.

In fact, these calculations indicate a strong pattern from which one might guess that

K̃h(τp(0)) has graded groups of rank

(N + 12, 2N + 12, N, N,N − 8, N − 8, . . . , 12, 12, 4, 4)

where N = 4 + 8(p − 5), for every odd p ≥ 5 (note that for p = 5 we have ranks

(16, 20, 4)). In particular, it seems reasonable to conjecture that w = p − 2 for the

branch sets associated to surgery on Kp, so that Khovanov homology obstructs finite

fillings on this class of knots.

We do not pursue this here, since the result may be shown by other means. Indeed, it is

possible to use Theorem 3.21 to rule out L-space surgeries by considering the Alexander

polynomials of the (−2, p, p)-pretzel knots,2 and this has been carried out very recently

by Ichihara and Jong completing Mattman’s classification of Montesinos knots admitting

finite fillings (Ichihara and Jong, 2008). Since then the result has received a different

treatment by Futer, Ishikawa, Kabaya, Mattman and Shimokawa (Futer et al., 2008).

We remark that Mattman’s classification (Mattman, 2000) using character variety meth-

ods illustrates some subtleties. Indeed, the (−2, 3, q)-pretzel knots admit L-space surg-

eries for all q ≥ 3 (see Theorem 3.28). Despite this fact however, Mattman shows that

for q > 9 none of these manifolds can have finite fundamental group. On the other

hand, for the (−2, p, p)-pretzel knots the character variety methods of Mattman were

inconclusive, but this is precisely the setting in which Heegaard-Floer homology – and,

1When p = 31 this illustrates the limits of available computational tools: the resulting branch
set has 140 crossings and reduced Khovanov homology of rank 1850.

2This was pointed out to the author by M. Hedden.



135

as seen here, Khovanov homology – obstructs finite fillings.

6.5 Khovanov homology obstructions in context: a final example

In light of the discussion above, it is natural to put the obstructions from Khovanov

homology in contrast with those coming from Heegaard-Floer homology. The latter

theory gives very stringent restrictions for the knot Floer homology of a knot admitting

an L-space surgery (Ozsváth and Szabó, 2005b), and in particular the quickly imple-

mented obstruction from the Alexander polynomial of Theorem 3.21. Since manifolds

with finite fundamental group are known to be L-spaces (Proposition 3.18), this gives

a useful obstruction to finite fillings. However, the criteria given in Theorem 3.21 can

fail.3 For example,

∆K(t) = t−3 − t−2 + t−1 − 1 + t− t2 + t3

where K is the 14 crossing, non-alternating knot shown in Figure 6.7. Since this is a

Figure 6.7 The strongly invertible knot K = 14n
11893 has Alexander polynomial

∆K(t) = t−3 − t−2 + t−1 − 1 + t− t2 + t3.

3Though it rarely does: of the 27436 non-alternating 14-crossing knots, this obstruction fails on
the order of 60 times. Among these knots, fewer still are strongly invertible.
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strongly invertible knot, we are in a position to apply width obstructions from Khovanov

homology, and to point out a particularly useful computational technique. The associ-

Figure 6.8 Isotopy of a fundamental domain for the involution on the complement of
14n

11893.

ated quotient tangle is determined in Figure 6.8: notice that by construction the trivial

knot τ(1
0) is obtained by connecting the endpoints of the arcs of τ with two horizontal

arcs inside the small sphere shown. Therefore, without knowing the framing, we can

be sure that the branch sets for integer surgeries result from adding vertical half-twists

inside the sphere, as shown in Figure 6.9.

Note that by doing this we have avoided incurring possible errors in further simplifying

the tangle, and inspection of the resulting group immediately gives that the associated

quotient tangle is generic, and the width is at least 4, for all n. As a result, we conclude:

Theorem 6.12. 14n
11893 does not admit finite fillings; one Khovanov homology group

suffices.

In this setting, by switching the circled crossing of Figure 6.9 from positive to negative,
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Figure 6.9 The branch set for some some integer surgery S3
n(K). Note that K̃h(τ(n)) ∼=

F20 ⊕ F36 ⊕ F39 ⊕ F16 so that χ = 59− 52 = 7 and n = ±7.

we can determine that

K̃h(τ(−9)) ∼= F20 ⊕ F36 ⊕ F41 ⊕ F16

K̃h(τ(−7)) ∼= F20 ⊕ F36 ⊕ F39 ⊕ F16

so that wmin = wmax = 4, and T is generic in the strong sense of Proposition 6.3,

determining the width for the branch set of any surgery on K.

While it is possible that the full knot Floer homology of K obstructs L-space surgeries,

this example shows that in certain settings the Khovanov homology obstructions may

be more convenient from a computational standpoint when the question of finite fillings

is of interest. Further, these obstructions may allow one to rule out finite fillings among

L-spaces, a distinction that can be subtle.
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CHAPTER VII

KHOVANOV HOMOLOGY AND THE TWO-FOLD BRANCHED

COVER, REVISITED.

Mutation provides an easy method for producing distinct knots sharing a common two-

fold branched cover: The mutation in the branch set corresponds to a trivial surgery in

the cover. Due to a result of Wehrli (Wehrli, 2007), this provides a range of examples of

manifolds that branch cover S3 in more than one way, but for which the distinct branch

sets have identical rank1 in their respective Khovanov homology groups over F.

From this point of view this fact is not completely surprising, given that Khovanov ho-

mology is closely related to the Heegaard-Floer homology of two-fold branched covers.

More generally however, the following question has been posed by Ozsváth: is Kho-

vanov homology an invariant of the two-fold branched cover? More precisely, Ozsváth’s

question asks if the total rank of the reduced Khovanov homology is an invariant of the

two-fold branched cover. This chapter gives a negative answer by constructing mani-

folds that are two-fold branched covers of S3 in two different ways where the two branch

sets are distinguished by the total rank of their Khovanov homology.

The examples given here are all Seifert fibered, and were given in (Watson, 2008a). Hy-

perbolic examples seem difficult to obtain, and we give some constructions of infinitely

many manifolds that branch in two different ways, with branch set that is distinguished

1In fact, the full Khovanov homology group of each mutant is the same, according to (Wehrli,
2007), although the question remains open in the case of Z-coefficients. Infinite families of mutants with
identical Khovanov homology (without restricition on coefficients) are produced in (Watson, 2007).
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by Khovanov homology, but for which the total rank is the same. As a result, such

examples are non-mutant, and serve as an illustration of Lemma 5.1 as a calculation

tool.

7.1 Seifert fibered two-fold branched covers

Throughout this section, let K be the positive (2, 5)-torus knot. In general, Tp,q will

denote the positive (p, q) torus knot in S3, so that K = T2,5.

Proposition 7.1. S3
±1/n(K) is Seifert fibered with base orbifold S2(2, 5, 10n∓ 1).

Proof. Let M = S3 r ν(K) so that M(α) = S3
p/q(K) for α = pµ + qλ. Let φ denote a

regular fibre in ∂M ; it is well known that φ = 10µ+λ (see (Moser, 1971), for example).

Now M is Seifert fibered with base orbifold D2(2, 5), and M(α) is Seifert fibered with

base orbifold S2(2, 5,∆(α, ϕ)) whenever α 6= ϕ, according to Theorem 1.21.

In the present setting, α = ±µ + nλ for n > 0 so that M(α) = S3
±1/n(K). Therefore,

∆(α, ϕ) = |(±µ + nλ) · (10µ + λ)| =


10n− 1 for positive surgeries

10n + 1 for negative surgeries

As a result, M(±µ+nλ) = S3
±1/n(K) is Seifert fibered with base orbifold S2(2, 5, 10n∓1)

as claimed.

Proposition 7.2. S3
±1/n(K) ∼= Σ(S3, T5,10∓1).

Proof. The Seifert structure on S3
±1/n(K) is unique (see Proposition 1.19 or Proposition

1.23) and as a result this manifold must be homeomorphic to the Brieskorn sphere

Σ(T5,10∓1) of Proposition 1.18.

Since K is strongly invertible, there must be a second involution on S3
±1/n(K) arising by

extending the involution to the Dehn surgery. This corresponds to a Montesinos knot,
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constructed as follows.

∼=

Figure 7.1 The strong inversion on the cinqfoil K (left); isotopy of a fundamental
domain (centre); and two representatives of the associated quotient tangle (right). No-
tice that the Seifert fibre structure on the complement of K is reflected in the sum of
rational tangles of the associated quotient tangle.

First, the associated quotient tangle is determined by isotopy of a fundamental domain

for the fundamental for the action. This is shown in Figure 7.1. We must fix the

canonical representative for the associated quotient tangle, and this is shown in Figure

7.2. Note that the knot τ(1
0) is trivial, so we need only ensure that τ(0) gives a branch set

for the zero surgery on K There are two ways to see that this is the case. First recall that

S3
10(K) is a connect sum of lens spaces (see (Moser, 1971), for example). This is reflected

in the numerator closure of either representative shown in Figure 7.1 as a connect sum of

two-bridge knots. Alternatively, it suffices to check that χ
(
K̃h(τ(0))

)
= det(τ(0)) = 0

(see Figure 7.3 below).
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Figure 7.2 The canonical representative of the associated quotient tangle for the cin-
qfoil, K.

Proposition 7.3. rk K̃h(τ( 1
n)) ≤ 16n− 1 and rk K̃h(τ(− 1

n)) ≤ 16n + 1.

Proof. First note that rk K̃h(τ(±1)) = 16∓1, as shown in Figure 7.3. The result follows

by induction in n: by applying the long exact sequence for Khovanov homology we have

that

rk K̃h(τ( 1
n) ≤ rk K̃h(τ( 1

n−1)) + rk K̃h(τ(0)) = rk K̃h(τ( 1
n−1)) + 16

and

rk K̃h(τ(− 1
n) ≤ rk K̃h(τ(− 1

n−1)) + rk K̃h(τ(0)) = rk K̃h(τ(− 1
n−1)) + 16.

By construction, we have that

S3
±1/n(K) ∼= Σ(S3, τ(± 1

n)) ∼= Σ(S3, T5,10n∓1).

Further, direct calculation shows that rk K̃h(T5,10±1) = 65 ± 8 and rk K̃h(T5,20±1) =

257± 16. As a result, we have the following:

Example 7.4. The Seifert fibered spaces S3
−1/2(K), S3

−1(K), S3
1(K) and S3

1/2(K) each
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Figure 7.3 The reduced Khovanov homology of τ(−1) (left), τ(0) (centre), and τ(1)
(right). Notice that K̃h(τ(0)) ∼= F8 ⊕ F8 implies that det(τ(0)) = 0.

branch cover S3 in two ways. Moreover, the rank of the reduced Khovanov homology

distinguishes the pair of branch sets in each of the four cases.

Corollary 7.5. The total rank of the reduced Khovanov homology is not an invariant

of the two-fold branched cover.

These examples show that the Seifert and Montesinos involutions on Seifert fibered ho-

mology spheres may be distinguished by the rank of Khovanov homology. Experimental

evidence suggests that the rank of the Khovanov homology for torus knots grows at a

rate that is at least linear. As such it seems safe to make the following conjecture:

Conjecture 7.6. The Seifert and Montesinos involutions are distinguished by the rank

of Khovanov homology for Seifert fibered homology spheres obtained by surgery on the

cinqfoil.

While this is certainly not the case for surgery on the trefoil,2 it seems likely that further

examples may be obtained by considering surgery on T2,2n+1 for n > 2.

2Indeed, the Seifert and Montesinos involution coincide for +1-surgery on the trefoil (see The-
orem 1.14).
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7.2 Hyperbolic two-fold branched covers.

A natural question is whether a similar example exists in the hyperbolic setting.

Question 7.7. Does there exist a hyperbolic two-fold branched cover of S3, branching

in more than one way, so that the rank of Khovanov homology distinguishes the branch

sets?

We remark that a hyperbolic two-fold branched cover can have at most 9 non-equivalent

branch sets (Reni, 2000, Corollary 1). Indeed, it has been shown that this bound is

realized (Kawauchi, 2006).

7.2.1 Pretzel knots, revisited.

2

1

As we have seen, the (−2, 5, 5)-pretzel knot is strongly invert-

ible in two distinct ways. By considering surgery on this knot

then we obtain two (possibly distinct) branch sets for the re-

sulting manifold as a two-fold branched cover of S3. We have

determined the associated quotient tangle for one of the two

involutions shown in Section 6.4, and the second tangle may

be determined by the same method. Both tangles are shown in Figure 7.4, though not

with canonical framing.

Canonical framings are obtained by adding 14 and 22 (positive) half twists to the

diagrams of T1 and T2 shown, respectively. As a result, we compute K̃h(τ1(0)) ∼=

F16 ⊕ F20 ⊕ F4, and have K̃h(τ2(0)) ∼= F4 ⊕ F20 ⊕ F16 from Section 6.4. These groups

are shown in Figure 7.5

More generally, from the behaviour of these groups we have that

K̃h(τ1(n)) ∼= F16 ⊕ F20+n ⊕ F4
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Figure 7.4 The tangles T1 (left) and T2 (right) associated to the distinct involutions
on the (−2, 5, 5)-pretzel
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Figure 7.5 The groups K̃h(τ1(0)) and K̃h(τ1(1)) (left), and the groups K̃h(τ2(0)) and
K̃h(τ2(1)) (right). The δ+ grading for T1 is the second column, while for T2 it is the
third.
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and

K̃h(τ2(n)) ∼= F4 ⊕ F20 ⊕ F16+n

for n ≥ 0 by calculating that

K̃h(τ1(1)) ∼= F16 ⊕ F21 ⊕ F4

and

K̃h(τ2(n)) ∼= F4 ⊕ F20 ⊕ F17

applying Lemma 5.1. As a result, while the groups clearly distinguish the links τ1(n)

and τ2(n), we have that rk K̃h(τi(n)) = 40 + n for n ≥ 0.
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Figure 7.6 K̃h(τ2(n)) for n = −18,−17,−16,−15,−14 (from left to right). The δ+

grading is highlighted for m = −18 in the notation of Lemma 5.1

In fact, it can be verified that this is true for all n > −16, and indeed by inspection of

Figure 7.6 we have that

rk K̃h(τi(n)) =


8− n for n < −16

26 for n = −16

40 + n for n > −16

for i = 1, 2 (compare Figure 6.6).

Remark 7.8. Using the width of K̃h(τ1(n)) we were able to conclude that the (−2, 5, 5)-
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pretzel knot does not admit finite fillings (see Theorem 6.10). Notice that such a result

depends, in general, on the choice of involution, as demonstrated by this example: the

same conclusion cannot be made using T2 since wmin = 2 in this case.

7.2.2 Paoluzzi’s example

Figure 7.7 Two views of the knot 10155.

The knot 10155 admits a pair of strong inversions as shown in Figure 7.7, however rather

than meeting in a point (as in the previous example), Paoluzzi shows that the two fixed

point sets for the respective involutions in this setting form a Hopf link (Paoluzzi, 2005,

Section 5, Figure 10).

Proceeding as in Section 6.5, the zero surgery has two distinct branch sets. These are

illustrated in Figure 7.8

Therefore, we have that

K̃h(τ1(0)) ∼= F16 ⊕ F25 ⊕ F9

and

K̃h(τ2(0)) ∼= F9 ⊕ F21 ⊕ F12 ⊕ F4 ⊕ F4

so that the ranks coincide. By considering the +5 surgery (say) in each case, and

applying Lemma 5.1 we may conclude that

K̃h(τ1(n)) ∼= F16 ⊕ F24 ⊕ F9+n
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Figure 7.8 The homology of the pair of branch sets associated to the zero surgery on
the knot 10155. Note that the Euler characteristic (and hence the determinant) is zero
in both cases.

and

K̃h(τ2(n)) ∼= F9 ⊕ F20 ⊕ F12+n ⊕ F4 ⊕ F4

for all n > 0. As a result,

rk K̃h(τi(n)) =


50 n = 0

48 + n n > 0

for i = 1, 2. Interestingly, in this case the width alone is enough to distinguish these

branch sets, while the rank is not.

Remark 7.9. We note that both branch sets give rise to generic tangles, so that in

either case we may conclude that 10155 does not admit finite fillings. More generally,

since

∆10155(t) = −t−3 + 3t−2 − 5t−1 + 7− 5t + 3t2 − t3

this knot does not admit L-space surgeries.
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7.3 Manifolds branching in 3 distinct ways

By a construction of Zimmermann (Zimmermann, 1997, Section 5), the following method

gives rise to a two-fold branched cover of S3 with three distinct branch sets (this example

taken from (Paoluzzi, 2005)).

γ1

γ2

γ3

Figure 7.9 A knotted theta graph Γ.

Consider the knotted theta graph Γ shown in Figure 7.9. Notice that this graph has

the property that Γ r γi is the trivial knot, and as a result S3 = Σ(S3,Γ r γi) for each

edge γi.

Now define Ki = γ̃i, the lift of arc meeting the (trivial) branch set in 2 points giving

rise to a knot in S3. That is,

Ki = γ̃i ↪→ Σ(S3,Γ r γi) ∼= S3.

The Ki may be determined by the method of (Zimmermann, 1997, Section 5), and are

given in (Paoluzzi, 2005, Figure 3).3

Zimmermann’s result is that the collection of 3-manifolds
{
Σ(S3,Ki)

}
for i = 1, 2, 3

are homeomorphic, as they are all obtained as a branched cover of the graph Γ.

3Note however that the theta graph given in (Paoluzzi, 2005, Figure 3) is incorrect.
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We compute

rk K̃h(Ki) = 191

and

w(Ki) = 2i + 2.



CHAPTER VIII

DOES KHOVANOV HOMOLOGY DETECT THE TRIVIAL KNOT?

The question of the existence of a non-trivial knot with trivial Jones polynomial has

received considerable attention since the discovery of this revolutionary knot invariant.

While the question remains open, Khovanov homology – the categorification of the Jones

polynomial – gives rise to a natural reformulation: Is there a non-trivial knot for which

the reduced Khovanov homology has rank 1? This chapter explores certain aspects of

this question, and in particular establishes a class of knots for which the answer is no.

As a result, Khovanov homology may be used to construct combinatorial knot invariants

that detect the trivial knot.

Some of the results in this chapter are joint work with M. Hedden (Hedden and Watson,

2008).

8.1 Strongly invertible knots

We begin with an observation regarding Khovanov homology and non-trivial, strongly

invertible knots in S3.

Theorem 8.1. Let K be a strongly invertible knot in S3 with associated quotient tangle

T = (B3, τ). Then K̃h(τ(n)) is thin for every non-zero integer n if and only if K is the

trivial knot.

Proof. If K is the trivial knot, then τ(n) is two-bridge link, and K̃h(τ(n)) is thin for
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n 6= 0 (c.f. Theorem 4.24). We treat the converse.

Recall that from Corollary 3.13 we have the following inequalities:

|H1(Σ(S3, L); Z)| ≤ rk ĤF(Σ(S3, L)) ≤ rk K̃h(L)

Further, whenever K̃h(L) is thin, |H1(Σ(S3, L); Z)| = rk K̃h(L) so that Σ(S3, L) is an

L-space (see Proposition 3.16).

Now suppose that K̃h(τ(n)) is thin for every non-zero integer n. Then from the discus-

sion above Σ2
τ(n)

∼= S3
n(K) is an L-space for n 6= 0. Applying Proposition 3.35, K must

be the trivial knot.

Using the symmetry group of the knot it is possible to determine when a knot is not

strongly invertible. As a result, Khovanov homology may be used to detect the trivial

knot in the following sense: since the trivial knot is strongly invertible, Khovanov

homology, together with the symmetry group of the knot, detects the trivial knot via

Theorem 8.1. Note that Lemma 5.1 combine to ensure that the minimal width wmin of

K̃h(τ(n)) is determined on a finite collection of integers. However, it is certainly true

that calculating the symmetry group is a difficult task in general.

In light of the relationship between Heegaard-Floer homology and Khovanov homology

by way of two-fold branched covers it is interesting to recall that knot Floer homology,

which is closely tied to the Heegaard-Floer homology of surgeries on a knot, detects the

trivial knot (see Section 3.8). Here, Khovanov homology detects the trivial knot among

knots whose complements are branched covers of tangles.

8.2 Tangle unknotting number one knots

Theorem 8.2. (Hedden and Watson, 2008) Suppose K ↪→ S3 has tangle unknotting

number one (as in Definition 4.1). Then rk K̃h(K) = 1 if and only if K is the trivial

knot.
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This follows immediately from Proposition 4.10 which asserts that the two-fold branched

cover of a tangle unknotting number one knot may be obtained by surgery on a knot in

S3, combined with the following more general statement.

Theorem 8.3. Let K be a non-trivial knot in S3 with the property that Σ2
K
∼= S3

p/q(K
′)

for some knot K ′ in S3. Then rk K̃h(K) > 1.

Proof. As in Section 8.1, the proof relies heavily on the machinery of Heegaard-Floer

homology, in particular Corollary 3.13 which gives the bound

∣∣H1(Σ2
L; Z)

∣∣ ≤ rk ĤF(Σ2
L) ≤ rk K̃h(L)

Suppose that Σ2
K
∼= S3

p/q(K
′). By passing to the mirror image if necessary we may

assume that p
q > 0 (notice that since we are considering knots the case p

q = 0 is

omitted). In this setting we obtain

p ≤ rk ĤF(S3
p/q(K

′)) ≤ rk K̃h(K)

and Theorem 8.3 follows immediately if p > 1. Therefore we may reduce to the case

of 1
q -framed surgeries so that S3

1/q(K
′) is a Z-homology sphere. Specifically, our task

is to consider the case rk ĤF(S3
1/q(K

′)) = 1. That is, the case when surgery on a knot

in S3 yields a Z-homology sphere L-space. But now we may apply Proposition 3.37 to

conclude that K ′ must be the trefoil.

We are left to deal with the case when K ′ is the trefoil. This is a strongly invertible

knot, and the associated quotient tangle is determined in Figure 4.2. The branch set

associated to +1 surgery on K ′ can be identified as the (−2, 3, 5)-pretzel knot (the knot

10124). Recall that this is the unique such branch set by Theorem 1.14. The result now

follows by direct calculation: rk K̃h(10124) = 7 as can be seen in Figure 2.2.
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8.3 Invariants for detecting the trivial knot

While Theorem 8.2 gives a very large class of knots on which the question of Khovanov

homology detecting the trivial knot may be answered, the result becomes particularly

interesting in light of the following corollary, which indicates that the Khovanov homol-

ogy of many satellite knots can be used to detect the trivial knot. To describe it, let

P (K) be the satellite knot of K with pattern P . By pattern, we mean that P is the

knot in the solid torus which is identified with the neighbourhood of K in the satellite

construction.

Corollary 8.4. Let P ↪→ S1 ×D2 be a knot in the solid torus. Suppose that

• For any K, P (K) has tangle unknotting number one.

• P (K) ' U if and only if K ' U , where U is the trivial knot.

Then rk K̃h(P (K)) = 1 if and only if K ' U . In particular, the reduced Khovanov

homology of the satellite operation defined by P detects the trivial knot.

Proof. Observe that if K1 ' K2 then P (K1) ' P (K2), so that the operation defined by

P does indeed descend to isotopy classes of knots. Given an invariant of a knot, K, this

observation allows us to define infinite families of invariants: simply apply the invariant

to all the various satellites of K.

In the case at hand, the invariant we are considering is the reduced Khovanov homology.

Suppose that we choose a pattern P so that P (K) has tangle unknotting number one

for every knot K, and so that P (K) ' U , if and only if U is the trivial knot. In this

situation, Theorem 8.2 applies to show that rk K̃h(P (K)) = 1 if and only if P (K) is the

trivial knot which, in turn, happens if and only if K is trivial.
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···︸ ︷︷ ︸
n

A simple infinite family of satellite constructions whose

Khovanov homologies detect the trivial knot are pro-

vided by the patterns shown in the solid torus on the

right, where n denotes the number of half twists. It is

straightforward to verify that each of these patterns

satisfies the hypotheses of Corollary 8.4. Note that the (2,±1)-cable of K is obtained

for n = ±1. Similarly, the positive (respectively negative) clasp, untwisted Whitehead

double of K is obtained for n = 2 (respectively n = −2). The case n = 0 is always the

trivial knot, while the convention n = 1
0 gives rise to the 2-cable of the knot K (this

latter satellite is a link, and is handled by a different technique in (Hedden, 2008)).

As a result, we obtain an infinite family of invariants, each of which detects the trivial

knot: denoting by Kn = P (K) the satellite using the pattern specified by the figure,

with n half-twists, we have that rk K̃h(Kn) = 1 if and only if K is trivial for any choice

n 6= 0.

We remark that for the satellites specified by the figure, it is straightforward to de-

termine the knot in S3 on which one performs surgery to obtain the double branched

covers:

Σ(S3,Kn) ∼= S3
1/n(K#K)

Indeed, there is an obvious strong inversion on K#K exchanging the two summands.

From this, one can see that the quotient is S3 and the image of the fixed-point set is

Kn. See Akbulut and Kirby (Akbulut and Kirby, 1980) or Montesinos and Whitten

(Montesinos and Whitten, 1986) for details.

8.4 Khovanov homology and L-space homology spheres

We remark that the answer to a seemingly more difficult question (c.f. Question 3.19)

may shed light on the question of whether Khovanov homology detects the trivial knot.

Proposition 8.5. If the Poincaré homology sphere is the only non-trivial, prime, L-
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space, integer homology 3-sphere, then Khovanov homology detects the trivial knot.

Proof. Let K be a non-trivial, prime knot in S3. Then det(K) is non-zero, and provides

a lower bound for rk K̃h(K). Thus we need only consider the case when det(K) = 1,

that is, when Σ(S3,K) is an integer homology sphere. More specifically, we need

only consider the case when Σ(S3,K) is an L-space, integer homology 3-sphere, since

rk ĤF(Σ(S3,K)) provides a lower bound for rk K̃h(K) (see Corollary 3.13).

If the answer to Question 3.19 is yes, then Σ(S3,K) must be the Poincaré homology

sphere. However, as we have seen, this implies that K is the knot 10124 with rk K̃h(K) =

7. As a result, Khovanov homology detects the trivial knot.

Note that it would be enough to show that the Poincaré homology sphere is the only

non-trivial, prime, L-space, integer homology 3-sphere among two-fold branched covers

of S3 to obtain the above result. However, does not appear to simplify Question 3.19

in any obvious sense.

We emphasize that knowing that Khovanov homology detects the trivial knot does not

give any information towards Question 3.19. Indeed, this seems to be a much harder

problem in general. On the other hand, an example of a non-trivial knot with trivial

Khovanov homology would immediately yield a new L-space integer homology 3-sphere

as two-fold branched cover.

8.5 Some examples of Eliahou, Kauffman and Thistlethwaite

T

U

The basic construction of (Eliahou et al., 2003) is that given a pair

of tangles, wired together as shown on the right, there is an operation

altering the diagram that is undetected by the bracket polynomial (and

hence the Jones polynomial, up to a possible shift). Consider the action

of the 3-strand braid group on tangles described in Section 4.4. For a

given braid β ∈ B3 denote the result of the action of β applied to a tangle T by T β. For
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the fixed diagram on the right for the link L (for given tangles T and U), denote Lβ the

link obtained by replacing the pair (T,U) with the pair (T β, Uβ−1
). Eliahou, Kauffman

and Thistlethwaite prove the following:

Proposition 8.6. (Eliahou et al., 2003) The links L and Lβ have the same Jones

polynomial, up to a possible shift, for β = σ2
2σ

−1
1 σ2

2.

Recall that H1(Σ(S3, Q)) 6= 0 if and only if det(L) = 0. Some version of the following

may be found in (Hedden, 2008).

Proposition 8.7. Let L be a link with det(L) = 0. If ||φ||T > 1 for [φ] ∈ H2(Σ(S3, Q); Z)

then rk K̃h(L) > 1. Here || · ||T denotes the Thurston norm.

1
1
2
2
3
2
1
1

1
1
2
3
2
2
1
1When T and U are rational tangles, notice that the resulting link L is com-

posed of a pair of two-bridge links. Dunbar shows that, in the case that both

of these links are non-trivial torus links, Σ(S3, L) is geometric and has Solv

geometry (Dunbar, 1988, Table 9). In particular, Σ(S3, L) is a torus bundle

so that ||φ||T = 1 rendering Proposition 8.7 ineffective. In this setting how-

ever, it can be shown that for non-trivial links L, the Jones polynomial is

trivial if and only if the pair of torus links are the trefoil and its mirror (Eliahou et al.,

2003). That is, L is the closure of the 4-braid

σ3
3(σ

−1
2 σ−1

3 σ−1
1 σ−1

2 )2σ−3
1 .

The reduced Khovanov homology for this link is displayed in the right, hence rk K̃h(L) =

26 for this particular link (notice that χ
(
K̃h(L)

)
= 13 − 13 and that the bracket

polynomial will be some shift of the bracket for the two-component trivial link).

Note that since Dunbar shows that the case of linked torus knots has geometric two-fold

branched cover, we can conclude that the cover is geometric for any choice of rational

tangles. This is particularly useful in light of Dunbar’s classification: perusing the tables

of (Dunbar, 1988) we conclude immediately that Σ(S3, L) must be hyperbolic (in which

case ||φ||T > 1) or Seifert fibered.
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The latter case is ruled out by observing that the link L is neither torus nor Montesinos

whenever one of the underlying two-bridge links is hyperbolic. Note that L cannot be a

torus link if one of its components is not a torus link, so it remains to show that the link

L is not Montesinos. Notice however that as a satellite of the Hopf link, this possibility

is ruled out.

As a result, whenever the pair of tangles (T,U) for L are rational tangles, if L is non-

trivial with det(L) = 0 then rk K̃h(L) > 1. In summary, since the particular family

LL2(n) of (Eliahou et al., 2003) is contained in this family, we have:

Theorem 8.8. The family LL2(n) with trivial Jones polynomial are distinguished from

the trivial link by Khovanov homology when n 6= 0.

In this notation, LL2(0) corresponds to the two-component trivial link. Note that we

have proved that any non-trivial link formed by two-bridge knots, modelled on the Hopf

link as constructed here, must have non-trivial Khovanov homology (compare Section

8.3).



CONCLUSION

The relationship between Khovanov homology and Heegaard-Floer homology indicates

that approaching Khovanov homology by way of two-fold branched covers is natural.

Perhaps more surprising, the correspondence between the complexity of the geometry

in the two-fold branched cover and the coarse complexity of the Khovanov homology

of the branch set (measured in terms of width) arises without reference to Heegaard-

Floer homology, and suggests that further geometric properties and applications may be

possible by way of Khovanov homology. These relationships – between Heegaard-Floer

homology and Khovanov homology, and between Khovanov homology and the geometry

of the two-fold branched cover – should be studied further. As such it seems fitting to

conclude with a list of problems that may act as a guide for future work.

Strengthening the relationship to Heegaard-Floer homology

Lemma 5.1 gives a strong analogy to Heegaard-Floer homology in the context of surgery

on knots in S3 (see Remark 5.2). As a result, though the splitting

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) → F[Z/nZ]

)
is a consequence of the simplicity of K̃h(τ(1

0)) ∼= F, it is natural to ask if this splitting

is natural, in the following sense:

Question. Let M be a simple, strongly invertible knot manifold, with associated quotient

tangle T = (B3, τ). Is there a choice of representative for T with the property that

K̃h(τ(m + n)) ∼= H∗

(
K̃h(τ(m)) →

⊕n−1
q=0

(⊕k
δ=1 Fbδ

)
[0, q]

)
for K̃h(τ(1

0)) ∼=
⊕k

δ=1 Fbδ?
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We remark that, whenever k = 1 (so that τ(1
0) is thin), the proof of Lemma 5.1 goes

through as before. More generally, in specific instances, it is certainly possible to say

something concrete about the behaviour of the width, despite the possibility differentials

interacting among the
(⊕k

δ=1 Fbδ

)
[0, i].

While a better understanding of this question is of interest regarding the interaction of

Khovanov homology and Heegaard-Floer homology, immediate application of results in

this direction would be the calculation of Khovanov homology for closures of arbitrary

tangles by rational tangles, without returning to the complex level for the connecting

homomorphisms. Aside from the Lee-Rasmussen spectral sequence, the skein exact

sequence is currently the only computational tool in Khovanov homology.

L-space knots

Khovanov homology may be used as an obstruction to lens space surgeries and finite

fillings, while Heegaard-Floer homology obstructs L-spaces, a decidedly larger class of

manifolds. Call K an L-space knot if it admits an L-space surgery. It would be very

interesting to have a classification of L-space knots in terms of Khovanov homology (at

least among strongly invertible knots).

Let K ↪→ S3 be a strongly invertible knot, with canonical associated quotient tangle

T = (B3, τ). Say T is stably thin if w(τ(n)) = 1 for n large enough. Note that we may

assume that n > 0 up to taking mirrors.

Question. If K admits an L-space surgery, is T stably thin?

The converse obviously holds, though we have no reason beyond never having encoun-

tered phenomena to the contrary to assume that the answer should be “yes”. Further-

more, we know of no examples of L-space knots that are not strongly invertible. Such an

example would be very interesting, as it would yield examples of L-spaces that do not

admit a strong inversion; currently there are no known examples of this phenomenon.
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Khovanov homology and the geometry of two-fold branched covers

The homological width of the branch sets for small Seifert fibered spaces may be ar-

bitrarily large, since such manifolds (Brieskorn spheres in particular) may arise as the

two-fold branched cover of torus knots. On the other hand, examples of thin links with

hyperbolic two-fold branched cover are easy to produce (consider large integer surgery

on a hyperbolic Berge knot, for example), and as such one should not expect to obstruct

hyperbolicity using the width of the branch set.

However, it seems possible that obstructions to other geometries exist.

Question. Can width be related to other geometries?

In particular, we expect that Euclidean and Sol geometries may arise as two-fold

branched covers of links with boundable width, and intend to pursue this question

further.

Finally, w and the total rank are the simplest possible invariants that one may derive

from Khovanov homology. While these are certainly homological quantities (in that

they cannot be recovered from the Jones polynomial in general), Khovanov homology

contains a wealth of rich and interesting structure that has yet to be explained or

exploited.



162



APPENDIX

AN EXAMPLE: SURGERY ON THE POINCARÉ SPHERE

In application of the surgery obstructions from this work, the requirement that the

knot be strongly invertible seems restrictive. However, while such an involution is

required, we remark that the obstructions presented may be applied in broader settings

beyond knots in the three sphere. As illustration of this, we study surgery on a strongly

invertible knot in the Poincaré homology sphere, Y . Dehn surgery on knots in this

manifold have been considered by Tange in the context of the Berge conjecture and

Question 3.19 (Tange, 2007).

γ

B

Figure 9.1 The branch set B (the knot 10124) and the arc γ giving rise to γ̃ = K
in the two-fold branched cover Y = Σ(S3, B) (the Poincaré sphere). The canonical
associated quotient tangle is shown on the right. Note that τ(1

0) ' B and K̃h(τ(0)) ∼=
F80 ⊕ F176 ⊕ F180 ⊕ F84 so that det(τ(0)) = 0.

Recall that Y ∼= Σ(S3, B) where B is the knot 10124, the (−2, 3, 5)-pretzel. Consider

the knot K ↪→ Y given by the lift γ̃ = K where γ is the arc illustrated in Figure

9.1 with endpoints on the branch set B. Note that K ↪→ Y is strongly invertible (by

construction), and that M = Y r ν(K) is a simple, strongly invertible knot manifold

(c.f. Definition 4.6).
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Since H1(Y ; Z) ∼= 0, there is a preferred longitudinal slope λ in ∂M so that H1(M(λ); Z) ∼=

Z and ∆(µ, λ) = 1. As a result, as in the case a of a knot complement in S3,

M ∼= Σ(B3, τ) where we fix the canonical representative T = (B3, τ) of associated

quotient tangle. This tangle is illustrated in Figure 9.1; notice that τ(1
0) ' B is ob-

tained by filling with the tangle (B3, ) (thus, a branch set for the trivial surgery on

K) and Y0(K) ∼= Σ(S3, τ(0)) where τ(0) is obtained by filling with (B3, ).

1
1

1

1

1
1

1In analysing the homology K̃h(τ(p
q )) for the branch sets associated to Yp/q(K),

first recall that K̃h(τ(1
0)) ∼= F3 ⊕ F4 as a singly graded group (the bigraded

group is illustrated on the right). As a result, we do not have a general form

of stability as in Lemma 5.1, a priori. However, it will make sense to consider

the groups K̃h(τ(m± 1)) for a fixed integer m. For example, when m = 0 we

have that

K̃h(τ(+1)) ∼= F80 ⊕ F176 ⊕ F183 ⊕ F88

K̃h(τ(0)) ∼= F80 ⊕ F176 ⊕ F180 ⊕ F84

K̃h(τ(−1)) ∼= F80 ⊕ F176 ⊕ F177 ⊕ F80

as relatively Z-graded groups (which verifies in particular that det(τ(0)) = 0 and

det(τ(±1)) = 1, as claimed). Notice that this forces each of

K̃h(τ(0)) ∼= H∗

(
K̃h(τ(−1)) 0→ K̃h(τ(1

0))
)

and

K̃h(τ(+1)) ∼= H∗

(
K̃h(τ(0)) 0→ K̃h(τ(1

0))
)

for dimension reasons (suppressing the grading shifts), since in each case the groups in

(relative) grading 3 and 4 are increased by 3 and 4 respectively.
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This behaviour should not be expected in general,1 though we do have that

K̃h(τ(m + 1) ∼= H∗

(
K̃h(τ(m)[−1

2 , 1
2 ] → K̃h(1

0)[−1
2(cτ + m), 1

2(3cτ + 3m + 2)]
)

,

and this mapping cone may be iterated as in the proof of Lemma 5.1. For example, the

groups

K̃h(τ(−11)) ∼= F80 ⊕ F176 ⊕ F155 ⊕ F48

K̃h(τ(−10)) ∼= F80 ⊕ F176 ⊕ F154 ⊕ F48

K̃h(τ(−9)) ∼= F80 ⊕ F176 ⊕ F153 ⊕ F48

are illustrate in Figure 9.2. When m = −11,−10, these groups illustrate the behaviour

of the above mapping cone. Notice that the total rank decreases by one in each case.

More generally, though differentials among the K̃h(τ(1
0))[x, y][0, q] may be present, the

groups still only occupy two -fixed diagonals when K̃h(τ(m+n)) is viewed as a relatively

graded group.

We now analyse the behaviour of w(τ(n)) for n ∈ Z. First notice that

K̃h(τ(0) ∼= F80 ⊕ F176 ⊕ F180 ⊕ F84

so that

K̃h(τ(1)) ∼= H∗

 F80 F176
0

$$JJJJJ F180
0

$$IIIII F84

F3 F4


by our calculations above. More generally, for m > 0

K̃h(τ(m + 1) ∼= H∗

 Fb1 Fb2

##GGG
GG

Fb3

##GGG
GG

Fb4

F3 F4



1However, it is very interesting that in this particular example fKh(τ(−9 + n) ∼=
H∗

“ fKh(τ(−9)
0→

Ln−1
q=0

fKh(τ( 1
0
))[x, y][0, q]

”
, at least for 0 < n ≤ 10, as in Lemma 5.1.
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Figure 9.2 The groups K̃h(τ(−11)), K̃h(τ(−10)) and K̃h(τ(−9)) from left to right.
The change in each group (corresponding to a +1 surgery in the cover) is circled;
the support of K̃h(τ(1

0)) ∼= F3 ⊕ F4 is shaded in grey so that K̃h(τ(m + 1)) ∼=
H∗

(
K̃h(τ(m)) → F3 ⊕ F4

)
.

by analysing the grading shifts as in the proof of Lemma 5.1. In particular, bi > 0 for

all m > 0 due to the shift by 1 in the secondary grading at each step (note that b1 = 80,

for all m).

Similarly, notice that

K̃h(τ(−1) ∼= H∗

 F3 � r

$$JJJJJ F4 � r

$$IIIII

F80 F176 F180 F84


this time by resolving the single negative terminal crossing (corresponding to the −1-
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surgery in the cover). More generally, for m < 0

K̃h(τ(m− 1) ∼= H∗

 F3

##GGG
GG F4

##GGG
GG

Fb1 Fb2 Fb3 Fb4


by inspection of the grading shifts as in Lemma 5.1. Analysing the groups in Figure

9.2, we see that b1 = 80 as before (for any m), while b4 is necessarily non-trivial due to

the shift by −1 in the secondary grading at each step.

As a result, we conclude that w(τ(n)) = 4 for every n ∈ Z.

With this in hand, we may determine w(τ(p
q )) for every p

q ∈ Q: w(τ(p
q )) is bounded

above by 4 (proceeding as in Propostion 5.11) and bounded below by 4 (proceeding as

in Proposition 5.13, since wmin = wmax = 4 in this case). Said another way, the function

w(τ(−)) : Q → N

is constant, with value 4. As a result, applying Theorem 4.25 we conclude that K ↪→ Y

does not admit finite fillings.
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Ozsváth, P. and Szabó, Z. (2003a). Absolutely graded Floer homologies and intersection
forms for four-manifolds with boundary. Adv. Math., 173(2):179–261.
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Ozsváth, P. and Szabó, Z. (2005c). On the Heegaard Floer homology of branched
double-covers. Adv. Math., 194(1):1–33.
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60(1):147–238.

Shumakovitch, A. (2004a). KhoHo. Available at http://www.geometrie.ch/KhoHo.

Shumakovitch, A. (2004b). Torsion of the Khovanov homology. Math.GT/0405474.

Singer, J. (1933). Three-dimensional manifolds and their Heegaard diagrams. Trans.
Amer. Math. Soc., 35(1):88–111.
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