Surgery Obstructions from Khovanov homology

Liam Watson Université du Québec à Montréal

www.cirget.uqam.ca/~liam

Georgia Topology Conference May 21, 2009

通 とう ほうとう ほうど

Let $K \hookrightarrow S^3$ be a strongly invertible knot.

Then there is an involution f on the knot complement $M = S^3 \smallsetminus \nu(K)$ with one dimensional fixed point set (a pair of arcs) meeting the boundary transversely in 4 distinct points.

Note that the quotient M/f is homeomorphic to a 3-ball.

Definition

For a strongly invertible knot $K \hookrightarrow S^3$, the associated quotient tangle is the pair $T = (B^3, \tau)$, where τ is the image of the fixed point set of f in the quotient $M/f \cong B^3$.

As a result the knot complement is a two-fold branched cover:

$$M \cong \mathbf{\Sigma}(B^3, \tau).$$

通 と く ヨ と く ヨ と

Example: the figure eight

Example: the figure eight

イロン 不同と 不同と 不同と

Tangles, in this setting, are considered up to homeomorphism of the pair (B^3, τ) :

In particular, such homeomorphisms need not fix the boundary.

By construction, the *denominator* closure of T – denoted $\tau(\frac{1}{0})$ – corresponds to the trivial surgery on K (notice that $\tau(\frac{1}{0})$ is the trivial knot).

In particular, with this notation $\tau(n)$ is obtained by adding *n* half-twists so that $S_n^3(K) \cong \Sigma(S^3, \tau(n)).$

向下 イヨト イヨト

In general,

$$S^3_{p/q}(K) \cong \mathbf{\Sigma}(S^3, \tau(\frac{p}{q}))$$

where the link $\tau(\frac{p}{q})$ is obtained by attaching a rational tangle. For example:

向下 イヨト イヨト

With the observation that

$$S^3_{p/q}(K) \cong \mathbf{\Sigma}(S^3, \tau(\frac{p}{q}))$$

in hand, the idea is to apply the Khovanov homology of $\tau(\frac{p}{q})$ as an obstruction to exceptional Dehn surgeries on K.

通 と く ヨ と く ヨ と

The reduced Khovanov homology is a relatively $\mathbb{Z} \oplus \mathbb{Z}$ -graded group $\widetilde{Kh}(L)$ associated to a link $L \hookrightarrow S^3$. We work over $\mathbb{F} \cong \mathbb{Z}/2\mathbb{Z}$, with primary (cohomological) grading δ and secondary (Jones, quantum) grading q. These grading conventions are non-standard:

Theorem (Khovanov)

Let $u = \delta + q$, then there exists and absolute $\mathbb{Z} \oplus \frac{1}{2}\mathbb{Z}$ -grading on $\widetilde{Kh}(L)$ so that

$$V_L(t) = \sum_{u,q} (-1)^u t^q \operatorname{rk} \widetilde{\operatorname{Kh}}_q^u(L)$$

where $V_L(t) \in \mathbb{Z}[t^{\frac{1}{2}}, t^{-\frac{1}{2}}]$ is the Jones polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: the trefoil

イロン イヨン イヨン イヨン

æ

Definition

The homological width of a link L is given by the number of δ -gradings supporting $\widetilde{Kh}(L)$. That is if

$$\bigoplus_{\delta} \widetilde{\mathsf{Kh}}^{\delta}(L) \cong \mathbb{F}^{b_1} \oplus \cdots \oplus \mathbb{F}^{b_k},$$

for $b_{\delta} \ge 0$ and $b_1, b_k > 0$, write w(L) = k. Notice that

$$\Big|\sum_{\delta} (-1)^{\delta} \operatorname{\mathsf{rk}} \widetilde{\mathsf{Kh}}^{\delta}(L)\Big| = \big| H_1(\mathbf{\Sigma}(S^3, L); \mathbb{Z}) \big|$$

since $|V_L(-1)| = \det(L) = |H_1(\boldsymbol{\Sigma}(S^3, L); \mathbb{Z})|.$

伺 ト イヨト イヨト

Theorem 1 (W.)

If $\Sigma(S^3, L)$ has finite fundamental group then $w(L) \le 2$. As a first step, compare:

Theorem If $\Sigma(S^3, L)$ is a lens space then w(L) = 1.

Proof.

Hodgson and Rubinstein show that if $\Sigma(S^3, L)$ is a lens space then L is a non-split two-bridge link; Lee proved that non-split alternating links – in particular two-bridge links – are thin.

・ 同 ト ・ ヨ ト ・ ヨ ト

• By the orbifold theorem, having a finite fundamental group is equivalent to admitting elliptic geometry in this setting (Thurston, see Boileau-Porti).

• Manifolds with elliptic geometry are all Seifert fibered: they are either lens spaces (see previous theorem) or have base orbifold $S^2(2,2,n)$ for n > 1 or $S^2(2,3,n)$ for n = 3,4,5 (Seifert, see Scott).

• These manifolds may be constructed by considering Dehn fillings of the twisted *I*-bundle over the Klein bottle (base $D^2(2,2)$) or the trefoil complement (base $D^2(2,3)$) (Heil, Montesinos).

• This construction is such that the branch set in each case is recovered, and this branch set is unique (Montesinos, Boileau-Otal).

- 4 同 6 4 日 6 4 日 6

In summary, there exists a set of links \mathcal{L} for which $L \in \mathcal{L}$ if and only if $\pi_1(\mathbf{\Sigma}(S^3, L))$ is finite.

To prove Theorem 1, we need to see that this collection of branch sets has relatively tame Khovanov homology, in the sense that $w(L) \leq 2$ whenever $L \in \mathcal{L}$.

This will rely on a particular form of **stability** enjoyed by Khovanov homology.

伺 ト イヨト イヨト

Let $K \hookrightarrow S^3$ be a strongly invertible knot so that $S^3_{p/q}(K) \cong \mathbf{\Sigma}(S^3, \tau(\frac{p}{q}))$. Define

$$w_{\mathcal{K}} = \min_{\substack{\underline{p}\\ \overline{q}}} \{ w(\tau(\frac{p}{q})) \}.$$

Theorem 2 (W.)

If $w_K > 1$ then K does not admit lens space surgeries, and if $w_K > 2$ then K does not admit finite fillings. Moreover, if T is **generic** then w_K is determined on a finite collection of integer fillings by **stability**.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The skein exact sequence

$$\widetilde{\mathsf{Kh}}(\mathbf{)}(\mathbf{)}[-\frac{c}{2},\frac{3c+2}{2}] < ---\frac{[1,0]}{2} - ---\widetilde{\mathsf{Kh}}(\mathbf{)}[-\frac{1}{2},\frac{1}{2}]$$

Where
$$c = n_{-}()$$
 () $- n_{-}(\bigstar)$ and $\widetilde{\mathsf{Kh}}_{q}^{\delta}(L)[i,j] = \widetilde{\mathsf{Kh}}_{q-j}^{\delta-i}(L)$.

Or, as a mapping cone:

$$\widetilde{\mathsf{Kh}}(\mathbf{X}) \cong H_*\left(\widetilde{\mathsf{Kh}}(\mathbf{X})[-\frac{1}{2},\frac{1}{2}] \to \widetilde{\mathsf{Kh}}(\mathbf{)}(\mathbf{)}[-\frac{c}{2},\frac{3c+2}{2}]\right)$$

Ξ.

3 ×

-2

A mapping cone for integer surgeries

Now when applying this to the link $\tau(m+1)$ we have:

A mapping cone for integer surgeries

So that

$$\widetilde{\mathsf{Kh}}(\tau(m+1)) \cong H_*\left(\widetilde{\mathsf{Kh}}(\tau(m))[-\frac{1}{2},\frac{1}{2}] \to \widetilde{\mathsf{Kh}}(\tau(\frac{1}{0}))[-\frac{c}{2},\frac{3c+2}{2}]\right)$$

where $au(rac{1}{0})$ is the trivial knot and $c = c_{ au} + m$ with

$$c_{\tau} = n_{-} \left(\left(\begin{array}{c} \end{array} \right) \right) - n_{-} \left(\begin{array}{c} \end{array} \right) \right)$$

$$\begin{split} &\widetilde{\mathsf{Kh}}(\tau(m+1)) \\ &\cong H_*\left(\widetilde{\mathsf{Kh}}(\tau(m))[-\frac{1}{2},\frac{1}{2}] \to \mathbb{F}[-\frac{c_{\tau}}{2},\frac{3c_{\tau}+2}{2}][0,m][-\frac{m}{2},\frac{m}{2}]\right) \end{split}$$

-2

Stability Lemma

For any integer m, and positive integer n,

$$\widetilde{\mathsf{Kh}}(\tau(m+n)) \cong H_*\left(\widetilde{\mathsf{Kh}}(\tau(m)) \to \bigoplus_n \widetilde{\mathsf{Kh}}(\tau(\frac{1}{0}))\right)$$

as a relatively $\mathbb{Z} \oplus \mathbb{Z}$ -graded group. More precisely, there exist explicit constants x and y and an identification

$$\bigoplus_{q=0}^{n-1} \widetilde{\mathsf{Kh}}(\tau(\frac{1}{0}))[x,y][0,q] \cong \mathbb{F}[\mathbb{Z}/n\mathbb{Z}]$$

as graded $\mathbb F\text{-vector}$ spaces so that

$$\widetilde{\mathsf{Kh}}(\tau(m+n))\cong H_*\left(\widetilde{\mathsf{Kh}}(\tau(m))\to \mathbb{F}[\mathbb{Z}/n\mathbb{Z}]\right).$$

イロン イヨン イヨン イヨン

イロン イヨン イヨン イヨン

Notice that $w(\tau(n)) = 2$ for n > 0, and $w(\tau(n)) = 3$ for $n \le 0$ as a consequence of the stability lemma.

By the cyclic surgery theorem, a lens space surgery on S^3 arises as an integer surgery.

Therefore, we recover the well known fact that the figure eight does not admit lens space surgeries:

 $\widetilde{\mathsf{Kh}}(\tau(0))\cong\mathbb{F}\oplus\mathbb{F}^5\oplus\mathbb{F}^4$

implies that w > 1 for branch sets associated to integer surgeries.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

For N >> 0 the exact sequence for $\widetilde{Kh}(\tau(N+1))$ splits so that, ignoring gradings,

$$\widetilde{\mathsf{Kh}}(\tau(N+1)) \cong \widetilde{\mathsf{Kh}}(\tau(N)) \oplus \mathbb{F}.$$

Lemma

Up to overall shift the generators $\widetilde{\mathsf{Kh}}(\tau(\frac{1}{0})) \cong \mathbb{F}$, when they survive in homology, are all supported in a single relative δ -grading.

Definition

For a given strongly invertible knot and preferred associated quotient tangle, define

$$w_{\max} = \max_{n \in \mathbb{Z}} \left\{ w(au(n))
ight\}$$

and

$$w_{\min} = \min_{n \in \mathbb{Z}} \left\{ w(\tau(n)) \right\}.$$

Lemma Either $w_{max} = w_{min}$ or $w_{max} = w_{min} + 1$.

回 と く ヨ と く ヨ と 二 ヨ

With a view to proving Theorem 1:

Proposition

Let K be a strongly invertible knot with preferred associated quotient tangle T. Then $w(\tau(\frac{p}{a})) \leq w_{\max}$.

向下 イヨト イヨト

To prove the proposition, it is natural to introduce

$$\widetilde{\mathsf{Kh}}_{\sigma}(L) \cong \widetilde{\mathsf{Kh}}(L)[-\frac{\sigma(L)}{2}]$$

as an *absolutely* \mathbb{Z} -graded object where $\sigma(L)$ is the signature. Theorem (Manolescu-Ozsváth)

$$\widetilde{Kh}_{\sigma}(\swarrow) = H_*\left(\widetilde{Kh}_{\sigma}(\precsim) \to \widetilde{Kh}_{\sigma}() ()\right)$$

if det()), det() () > 0 and det(\bigotimes) = det($\widecheck{}$) + det() ()
It is possible to prove a variant of this statement when the

determinant of one of the resolutions vanishes.

ヨト イヨト イヨト

Resolutions and continued fractions

$$\frac{p}{q} = \frac{13}{10} = [1, 3, 3]$$

$$\frac{1}{q_1} = \frac{1}{3} = [1, 5]$$

 $\frac{p_0}{q_0} = \frac{9}{7} = [1, 3, 2]$

イロン 不同 とくほど 不良 とうほ

$$\frac{13}{10} = \frac{4+9}{3+7}$$

Resolutions and continued fractions

In general,

$$rac{p}{q}=rac{p_0+p_1}{q_0+q_1}$$

when

$$\frac{p}{q} = [a_1, \dots, a_{r-1}, a_r - 1, 1] = [a_1, \dots, a_{r-1}, a_r]$$

and $\frac{p_0}{q_0}, \frac{p_1}{q_1}$ are the continued fractions

$$[a_1, \ldots, a_{r-1}], [a_1, \ldots, a_{r-1}, a_r - 1].$$

Since det $(\tau(\frac{p}{q})) = |H_1(\Sigma(S^3, \tau(\frac{p}{q})); \mathbb{Z})| = |H_1(S^3_{p/q}(K); \mathbb{Z})| = p$ we have that

$$\det(\tau(\tfrac{p}{q})) = \det(\tau(\tfrac{p_0}{q_0})) + \det(\tau(\tfrac{p_1}{q_1}))$$

and Manolescu and Ozsváth's theorem may be applied.

御 とくぼとくほとう ほう

As a result, it is possible to induct in the length r of the continued fraction to prove that w_{\max} is an upper bound for $w(\tau(\frac{p}{a}))$.

In particular, be successively resolving the final crossing of $\tau(\frac{p}{q})$ it can be shown that

$$\begin{split} w(\tau(\frac{p}{q})) &\leq \max\{w(\tau\lfloor\frac{p}{q}\rfloor), w(\tau\lceil\frac{p}{q}\rceil)\}\\ &= \max\{w(\tau(a_1)), w(\tau(a_1+1))\}. \end{split}$$

where $\frac{p}{q} = [a_1, ..., a_{r-1}, a_r].$

伺 ト イヨト イヨト

Definition

The set of quasi-alternating links ${\mathcal Q}$ is the smallest set of such that:

- \bullet The trivial knot is an element of \mathcal{Q}_{r} and
- if L admits a projection with distinguished crossing X for which each resolution gives an element of Q, and

$$\mathsf{det}(\mathbf{X}) = \mathsf{det}(\mathbf{X}) + \mathsf{det}(\mathbf{)}(\mathbf{)},$$

then $L \in \mathcal{Q}$ as well.

Theorem (Manolescu-Ozsváth)

Quasi-alternating links are homologically thin.

Proposition

Suppose $S^3_{p/q}(K) \cong \Sigma(S^3, \tau(\frac{p}{q}))$ and $\tau(N)$ is quasi-alternating for some N > 0. Then $\tau(\frac{p}{q})$ is quasi-alternating for all $\frac{p}{q} \ge N$.

Corollary

For large surgery on the trefoil, $\tau(\frac{p}{q})$ is quasi-alternating. In particular, $w(\tau(\frac{p}{q})) = 1$ for $\frac{p}{q} \ge 5$.

向下 イヨト イヨト

Since $w_{\text{max}} = w_{\text{min}} + 1 = 2$ for the tangle associated to the trefoil, $w(L) \le 2$ for $\Sigma(S^3, L)$ Seifert fibered with base orbifold $S^2(2, 3, n)$.

A similar argument holds for branch sets associated to fillings of the twisted *I*-bundle over the Klein bottle to obtain the $S^2(2,2,n)$ family.

This proves Theorem 1.

通 と く ヨ と く ヨ と

The proof of Theorem 2 depends on similar arguments to establish w_{\min} as a lower bound for $w(\tau(\frac{p}{q}))$.

Proposition

Let K be a strongly invertible knot with **generic** preferred associated quotient tangle T. Then $w(\tau(\frac{p}{q})) \ge w_{\min}$. In particular:

 $w_K = w_{\min}$

伺 ト イヨト イヨト

Genericity

A tangle T is generic if either

- $w_{\max} = w_{\min}$, or
- if $b_k > 1$ where

$$\widetilde{\mathsf{Kh}}(\tau(\ell)) \cong \mathbb{F}^{b_1} \oplus \cdots \oplus \mathbb{F}^{b_k}$$

and

$$\widetilde{\mathsf{Kh}}(\tau(\ell+1))\cong\mathbb{F}^{b_1}\oplus\cdots\oplus\mathbb{F}^{b_k}\oplus\mathbb{F},$$

or

• if $b_1 > 1$ where

$$\widetilde{\mathsf{Kh}}(\tau(\ell))\cong\mathbb{F}\oplus\mathbb{F}^{b_1}\oplus\cdots\oplus\mathbb{F}^{b_k}$$

and

$$\widetilde{\mathsf{Kh}}(\tau(\ell+1))\cong\mathbb{F}^{b_1}\oplus\cdots\oplus\mathbb{F}^{b_k}.$$

For example, for the figure eight we had that

 $\widetilde{\mathsf{Kh}}(\tau(0))\cong\mathbb{F}\oplus\mathbb{F}^5\oplus\mathbb{F}^4$

and

$$\widetilde{\mathsf{Kh}}(\tau(+1))\cong\mathbb{F}^5\oplus\mathbb{F}^4$$

so that the width *decays* but $b_1 = 5$ so the tangle is generic. Since the figure eight is amphicheiral, we recover:

Theorem (Thurston)

The figure eight does not admit finite fillings.

向下 イヨト イヨト

Suppose that $w_{\min} = w_{\max} = w$. Then as before

$$\widetilde{\mathsf{Kh}}_{\sigma}(\tau(\tfrac{p}{q})) \cong H_*\left(\widetilde{\mathsf{Kh}}_{\sigma}(\tau(\tfrac{p_0}{q_0})) \to \widetilde{\mathsf{Kh}}_{\sigma}(\tau(\tfrac{p_1}{q_1}))\right).$$

Recall that the connecting homomorphism raises $\delta\text{-}\mathsf{grading}$ by one:

$$\widetilde{\mathsf{Kh}}(\tau(\frac{p}{q})) \cong H_* \left(\begin{array}{ccc} \mathbb{F}^{b_1} & \mathbb{F}^{b_2} & \cdots & \mathbb{F}^{b_w} \\ & & & & \\ \mathbb{F}^{b_1'} & \mathbb{F}^{b_2'} & \cdots & \mathbb{F}^{b_w'} \end{array} \right)$$

By induction in the length of the continued fraction for $\frac{p}{q}$, $w(\tau(\frac{p}{q})) = w$.

(日本) (日本) (日本)

Notice that $w(\tau(-)) : \mathbb{Q} \to \mathbb{N}$ is constant when $w_{\min} = w_{\max}$.

After a slightly modified argument when $w_{\max} = w_{\min} + 1$, we have $w(\tau(-)) : \mathbb{Q} \to \mathbb{N}$ takes values $\{w_{\min}, w_{\max}\}$ in the generic setting.

This proves Theorem 2: for generic tangles, the minimum width is determined on the integer fillings. That is,

 $W_K = W_{\min}$.

Example: the knot 14^{n}_{11893}

Theorem (Ozsváth-Szabó) If $K \hookrightarrow S^3$ admits an L-space surgery then

$$\Delta_{\kappa}(t) = (-1)^k + \sum_{j=1}^k (-1)^{k-j} (t^{-n_j} + t^{n_j})$$

for
$$0 < n_1 < n_2 < \cdots < n_k$$
.

For example, $\Delta_{4_1}(t) = -t^{-1} + 3 - t$.

On the other hand, $\Delta_{14_{11893}^n}(t)=t^{-3}-t^{-2}+t^{-1}-1+t-t^2+t^3.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: the knot 14_{11893}^n

◆□ > ◆□ > ◆臣 > ◆臣 > ○

			1
			2
			1 2 2 3 3 2 2 1
		2	3
		4 5 7	3
		5	2
	2	7	2
	2 4 5 6 7 5 4		1
	5	7 6 5 3	
1	6	5	
2	7	3	
3	5		
3	4		
4	3		
12334322			
2			
2			

For any *n*

 $w(\tau(n)) \geq 4$

so that

$$w_k = 4$$

Theorem

14ⁿ₁₁₈₉₃ does not admit finite fillings.

・ロト ・回ト ・ヨト ・ヨト

-2

			1
			2
			2
		2	1 2 3 3 2 2
		2 4 5 7	3
		5	2
	2	7	2
	2 4 5 6 7 5	7 6 5 3	1
	5	6	
1	6	5	
2	7	3	
3	5		
3	4 3		
4	3		
3			
12334322			
2			

			1
			2
			1 2 2
		2	3
		4	3 2 2
		5	2
	2	4 5 7	2
	4	7	1
	5	6	
1	5 6 7 5 4	5	
2	7	4	
3	5	1	
3	4		
4	3		
12334322			
2			
2			

< ≣⇒

< ≣ >

4

 $\det(\tau(m)) = 9$

			1
			1 2 3 3 2 2 2
			2
		2	3
		4 5 7	3
		5	2
	2	7	2
	4 5 6 7 5	7	1
	5	6 5 3	
1	6	5	
2	7	3	
3	5		
3	4 3		
4	3		
12334322			
2			
2			

 $\widetilde{\mathsf{Kh}}(\tau(-7))\cong$ $\mathbb{F}^{20} \!\oplus\! \mathbb{F}^{36} \!\oplus\! \mathbb{F}^{39} \!\oplus\! \mathbb{F}^{16}$

			1
			2
			2
		2	3
		4 5 7	3 2 2
		5	2
	2	7	2
	4	7	1
	5	6	
1	5 6	5 4	
2	7	4	
3	5	1	
3	4 3		
4	3		
12334322			
2			
2			

 $\widetilde{\mathsf{Kh}}(\tau(-9))\cong$ $\mathbb{F}^{20} \!\oplus\! \mathbb{F}^{36} \!\oplus\! \mathbb{F}^{41} \!\oplus\! \mathbb{F}^{16}$

Surgery Obstructions from Khovanov homology

・ロン ・四 ・ ・ ヨン ・ ヨン

æ