Surgery Obstructions from Khovanov homology

Liam Watson
Université du Québec à Montréal
www. cirget. uqam.ca/~liam
Georgia Topology Conference May 21, 2009

Involutions and tangles

Let $K \hookrightarrow S^{3}$ be a strongly invertible knot.

Then there is an involution f on the knot complement $M=S^{3} \backslash \nu(K)$ with one dimensional fixed point set (a pair of arcs) meeting the boundary transversely in 4 distinct points.

Involutions and tangles

Note that the quotient M / f is homeomorphic to a 3-ball.

Definition

For a strongly invertible knot $K \hookrightarrow S^{3}$, the associated quotient tangle is the pair $T=\left(B^{3}, \tau\right)$, where τ is the image of the fixed point set of f in the quotient $M / f \cong B^{3}$.
As a result the knot complement is a two-fold branched cover:

$$
M \cong \boldsymbol{\Sigma}\left(B^{3}, \tau\right)
$$

Example: the figure eight

Example: the figure eight

Example: the figure eight

Tangles, in this setting, are considered up to homeomorphism of the pair $\left(B^{3}, \tau\right)$:

In particular, such homeomorphisms need not fix the boundary.

The preferred representative

cos
By construction, the denominator closure of T denoted $\tau\left(\frac{1}{0}\right)$ - corresponds to the trivial surgery on K (notice that $\tau\left(\frac{1}{0}\right)$ is the trivial knot).

There is a preferred choice of representative for the associated quotient tangle so that the numerator closure of T - denoted $\tau(0)$ - corresponds to the zero surgery in the cover: $S_{0}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau(0)\right)$.

In particular, with this notation $\tau(n)$ is obtained by adding n half-twists so that $S_{n}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau(n)\right)$.

Montesinos' trick

In general,

$$
S_{p / q}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau\left(\frac{p}{q}\right)\right)
$$

where the link $\tau\left(\frac{p}{q}\right)$ is obtained by attaching a rational tangle. For example:

Branch sets for Dehn surgeries

With the observation that

$$
S_{p / q}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau\left(\frac{p}{q}\right)\right)
$$

in hand, the idea is to apply the Khovanov homology of $\tau\left(\frac{p}{q}\right)$ as an obstruction to exceptional Dehn surgeries on K.

Khovanov homology

The reduced Khovanov homology is a relatively $\mathbb{Z} \oplus \mathbb{Z}$-graded group $\widetilde{\mathrm{Kh}}(L)$ associated to a link $L \hookrightarrow S^{3}$. We work over $\mathbb{F} \cong \mathbb{Z} / 2 \mathbb{Z}$, with primary (cohomological) grading δ and secondary (Jones, quantum) grading q. These grading conventions are non-standard:

Theorem (Khovanov)
Let $u=\delta+q$, then there exists and absolute $\mathbb{Z} \oplus \frac{1}{2} \mathbb{Z}$-grading on $\widetilde{\mathrm{Kh}}(L)$ so that

$$
V_{L}(t)=\sum_{u, q}(-1)^{u} t^{q} \operatorname{rk} \widetilde{\mathrm{Kh}}_{q}^{u}(L)
$$

where $V_{L}(t) \in \mathbb{Z}\left[t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right]$ is the Jones polynomial.

Example: the trefoil

Homological width

Definition

The homological width of a link L is given by the number of δ-gradings supporting $\widetilde{\mathrm{Kh}}(L)$. That is if

$$
\bigoplus_{\delta} \widetilde{\mathrm{Kh}}^{\delta}(L) \cong \mathbb{F}^{b_{1}} \oplus \cdots \oplus \mathbb{F}^{b_{k}}
$$

for $b_{\delta} \geq 0$ and $b_{1}, b_{k}>0$, write $w(L)=k$.
Notice that

$$
\left|\sum_{\delta}(-1)^{\delta} \mathrm{rk} \widetilde{\mathrm{Kh}}^{\delta}(L)\right|=\left|H_{1}\left(\boldsymbol{\Sigma}\left(S^{3}, L\right) ; \mathbb{Z}\right)\right|
$$

since $\left|V_{L}(-1)\right|=\operatorname{det}(L)=\left|H_{1}\left(\boldsymbol{\Sigma}\left(S^{3}, L\right) ; \mathbb{Z}\right)\right|$.

Examples

$w\left(3_{1}\right)=1$

$$
w\left(10_{124}\right)=2
$$

Homological width

Theorem 1 (W.)
If $\boldsymbol{\Sigma}\left(S^{3}, L\right)$ has finite fundamental group then $w(L) \leq 2$.
As a first step, compare:
Theorem
If $\boldsymbol{\Sigma}\left(S^{3}, L\right)$ is a lens space then $w(L)=1$.
Proof.
Hodgson and Rubinstein show that if $\boldsymbol{\Sigma}\left(S^{3}, L\right)$ is a lens space then L is a non-split two-bridge link; Lee proved that non-split alternating links - in particular two-bridge links - are thin.

Manifolds with finite fundamental group

- By the orbifold theorem, having a finite fundamental group is equivalent to admitting elliptic geometry in this setting (Thurston, see Boileau-Porti).
- Manifolds with elliptic geometry are all Seifert fibered: they are either lens spaces (see previous theorem) or have base orbifold $S^{2}(2,2, n)$ for $n>1$ or $S^{2}(2,3, n)$ for $n=3,4,5$ (Seifert, see Scott).
- These manifolds may be constructed by considering Dehn fillings of the twisted I-bundle over the Klein bottle (base $D^{2}(2,2)$) or the trefoil complement (base $D^{2}(2,3)$) (Heil, Montesinos).
- This construction is such that the branch set in each case is recovered, and this branch set is unique (Montesinos, Boileau-Otal).

Manifolds with finite fundamental group

In summary, there exists a set of links \mathcal{L} for which $L \in \mathcal{L}$ if and only if $\pi_{1}\left(\boldsymbol{\Sigma}\left(S^{3}, L\right)\right)$ is finite.

To prove Theorem 1, we need to see that this collection of branch sets has relatively tame Khovanov homology, in the sense that $w(L) \leq 2$ whenever $L \in \mathcal{L}$.

This will rely on a particular form of stability enjoyed by Khovanov homology.

Surgery obstructions

Let $K \hookrightarrow S^{3}$ be a strongly invertible knot so that $S_{p / q}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau\left(\frac{p}{q}\right)\right)$. Define

$$
w_{K}=\min _{\frac{p}{q} \in \mathbb{Q}}\left\{w\left(\tau\left(\frac{p}{q}\right)\right)\right\} .
$$

Theorem 2 (W.)
If $w_{K}>1$ then K does not admit lens space surgeries, and if $w_{K}>2$ then K does not admit finite fillings. Moreover, if T is generic then w_{K} is determined on a finite collection of integer fillings by stability.

The skein exact sequence

$$
\widetilde{\mathrm{Kh}}()()\left[-\frac{c}{2}, \frac{3 c+2}{2}\right]<---\stackrel{[1,0]}{\widetilde{\mathrm{Kh}}\left(\lambda^{\pi}\right)}
$$

Where $c=n_{-}()()-n_{-}\left(\lambda^{\pi}\right)$ and $\widetilde{\mathrm{Kh}}_{q}^{\delta}(L)[i, j]=\widetilde{\mathrm{Kh}}_{q-j}^{\delta-i}(L)$.
Or, as a mapping cone:

$$
\widetilde{\mathrm{Kh}}\left(\lambda^{\top}\right) \cong H_{*}\left(\widetilde{\mathrm{Kh}}(\frown)\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \widetilde{\mathrm{Kh}}()()\left[-\frac{c}{2}, \frac{3 c+2}{2}\right]\right)
$$

A mapping cone for integer surgeries

Now when applying this to the link $\tau(m+1)$ we have:

A mapping cone for integer surgeries

So that

$$
\widetilde{\mathrm{Kh}}(\tau(m+1)) \cong H_{*}\left(\widetilde{\mathrm{Kh}}(\tau(m))\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \widetilde{\mathrm{Kh}}\left(\tau\left(\frac{1}{0}\right)\right)\left[-\frac{c}{2}, \frac{3 c+2}{2}\right]\right)
$$

where $\tau\left(\frac{1}{0}\right)$ is the trivial knot and $c=c_{\tau}+m$ with

$$
==-(\mathbb{C D})-n(\mathbb{O})
$$

$$
\begin{aligned}
& \widetilde{\mathrm{Kh}}(\tau(m+1)) \\
& \cong H_{*}\left(\widetilde{\mathrm{Kh}}(\tau(m))\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{F}\left[-\frac{c_{r}}{2}, \frac{3 c_{r}+2}{2}\right][0, m]\left[-\frac{m}{2}, \frac{m}{2}\right]\right)
\end{aligned}
$$

A mapping cone for integer surgeries

Stability Lemma

For any integer m, and positive integer n,

$$
\widetilde{\mathrm{Kh}}(\tau(m+n)) \cong H_{*}\left(\widetilde{\mathrm{Kh}}(\tau(m)) \rightarrow \bigoplus_{n} \widetilde{\mathrm{Kh}}\left(\tau\left(\frac{1}{0}\right)\right)\right)
$$

as a relatively $\mathbb{Z} \oplus \mathbb{Z}$-graded group. More precisely, there exist explicit constants x and y and an identification

$$
\bigoplus_{q=0}^{n-1} \widetilde{\mathrm{Kh}}\left(\tau\left(\frac{1}{0}\right)\right)[x, y][0, q] \cong \mathbb{F}[\mathbb{Z} / n \mathbb{Z}]
$$

as graded \mathbb{F}-vector spaces so that

$$
\widetilde{\mathrm{Kh}}(\tau(m+n)) \cong H_{*}(\widetilde{\mathrm{Kh}}(\tau(m)) \rightarrow \mathbb{F}[\mathbb{Z} / n \mathbb{Z}])
$$

Example: the figure eight revisited

Example: the figure eight revisited

Notice that $w(\tau(n))=2$ for $n>0$, and $w(\tau(n))=3$ for $n \leq 0$ as a consequence of the stability lemma.

By the cyclic surgery theorem, a lens space surgery on S^{3} arises as an integer surgery.

Therefore, we recover the well known fact that the figure eight does not admit lens space surgeries:

$$
\widetilde{\mathrm{Kh}}(\tau(0)) \cong \mathbb{F} \oplus \mathbb{F}^{5} \oplus \mathbb{F}^{4}
$$

implies that $w>1$ for branch sets associated to integer surgeries.

Consequences of stability

Lemma

For $N \gg 0$ the exact sequence for $\widetilde{\mathrm{Kh}}(\tau(N+1))$ splits so that, ignoring gradings,

$$
\widetilde{\mathrm{Kh}}(\tau(N+1)) \cong \widetilde{\mathrm{Kh}}(\tau(N)) \oplus \mathbb{F}
$$

Lemma

Up to overall shift the generators $\widetilde{\mathrm{Kh}}\left(\tau\left(\frac{1}{0}\right)\right) \cong \mathbb{F}$, when they survive in homology, are all supported in a single relative δ-grading.

Maximum and minimum width

Definition

For a given strongly invertible knot and preferred associated quotient tangle, define

$$
w_{\max }=\max _{n \in \mathbb{Z}}\{w(\tau(n))\}
$$

and

$$
w_{\min }=\min _{n \in \mathbb{Z}}\{w(\tau(n))\}
$$

Lemma

Either $w_{\max }=w_{\min }$ or $w_{\max }=w_{\min }+1$.

An upper bound for width

With a view to proving Theorem 1:

Proposition

Let K be a strongly invertible knot with preferred associated quotient tangle T. Then $w\left(\tau\left(\frac{p}{q}\right)\right) \leq w_{\max }$.

σ-normalized Khovanov homology

To prove the proposition, it is natural to introduce

$$
\widetilde{\mathrm{Kh}}_{\sigma}(L) \cong \widetilde{\mathrm{Kh}}(L)\left[-\frac{\sigma(L)}{2}\right]
$$

as an absolutely \mathbb{Z}-graded object where $\sigma(L)$ is the signature.
Theorem (Manolescu-Ozsváth)

$$
\widetilde{\mathrm{Kh}}_{\sigma}\left(\boldsymbol{X}^{\prime}\right)=H_{*}\left(\widetilde{\mathrm{Kh}}_{\sigma}(\check{\frown}) \rightarrow \widetilde{\mathrm{Kh}}_{\sigma}()()\right)
$$

if $\operatorname{det}(\curvearrowleft), \operatorname{det}()()>0$ and $\operatorname{det}\left(\right.$ ス $\left.^{(}\right)=\operatorname{det}(\cong)+\operatorname{det}()()$. It is possible to prove a variant of this statement when the determinant of one of the resolutions vanishes.

Resolutions and continued fractions

$$
\frac{p}{q}=\frac{13}{10}=[1,3,3]
$$

$$
\frac{p_{1}}{q_{1}}=\frac{4}{3}=[1,3]
$$

$$
\frac{p_{0}}{q_{0}}=\frac{9}{7}=[1,3,2]
$$

$$
\frac{13}{10}=\frac{4+9}{3+7}
$$

Resolutions and continued fractions

In general,

$$
\frac{p}{q}=\frac{p_{0}+p_{1}}{q_{0}+q_{1}}
$$

when

$$
\frac{p}{q}=\left[a_{1}, \ldots, a_{r-1}, a_{r}-1,1\right]=\left[a_{1}, \ldots, a_{r-1}, a_{r}\right]
$$

and $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}$ are the continued fractions

$$
\left[a_{1}, \ldots, a_{r-1}\right],\left[a_{1}, \ldots, a_{r-1}, a_{r}-1\right] .
$$

Since $\operatorname{det}\left(\tau\left(\frac{p}{q}\right)\right)=\left|H_{1}\left(\boldsymbol{\Sigma}\left(S^{3}, \tau\left(\frac{p}{q}\right)\right) ; \mathbb{Z}\right)\right|=\left|H_{1}\left(S_{p / q}^{3}(K) ; \mathbb{Z}\right)\right|=p$ we have that

$$
\operatorname{det}\left(\tau\left(\frac{p}{q}\right)\right)=\operatorname{det}\left(\tau\left(\frac{p_{0}}{q_{0}}\right)\right)+\operatorname{det}\left(\tau\left(\frac{p_{1}}{q_{1}}\right)\right)
$$

and Manolescu and Ozsváth's theorem may be applied.

Resolutions and continued fractions

As a result, it is possible to induct in the length r of the continued fraction to prove that $w_{\text {max }}$ is an upper bound for $w\left(\tau\left(\frac{p}{q}\right)\right)$.

In particular, be successively resolving the final crossing of $\left.\tau\left(\frac{p}{q}\right)\right)$ it can be shown that

$$
\begin{aligned}
w\left(\tau\left(\frac{p}{q}\right)\right) & \leq \max \left\{w\left(\tau\left\lfloor\frac{p}{q}\right\rfloor\right), w\left(\tau\left\lceil\frac{p}{q}\right\rceil\right)\right\} \\
& =\max \left\{w\left(\tau\left(a_{1}\right)\right), w\left(\tau\left(a_{1}+1\right)\right)\right\} .
\end{aligned}
$$

where $\frac{p}{q}=\left[a_{1}, \ldots, a_{r-1}, a_{r}\right]$.

On Quasi-alternating links

Definition

The set of quasi-alternating links \mathcal{Q} is the smallest set of such that:

- The trivial knot is an element of \mathcal{Q}, and
- if L admits a projection with distinguished crossing \backslash for which each resolution gives an element of \mathcal{Q}, and

$$
\operatorname{det}(\not \backslash)=\operatorname{det}(\cong)+\operatorname{det}()()
$$

then $L \in \mathcal{Q}$ as well.
Theorem (Manolescu-Ozsváth)
Quasi-alternating links are homologically thin.

On Quasi-alternating links

Proposition

Suppose $S_{p / q}^{3}(K) \cong \boldsymbol{\Sigma}\left(S^{3}, \tau\left(\frac{p}{q}\right)\right)$ and $\tau(N)$ is quasi-alternating for some $N>0$. Then $\tau\left(\frac{p}{q}\right)$ is quasi-alternating for all $\frac{p}{q} \geq N$.

Corollary

For large surgery on the trefoil, $\tau\left(\frac{p}{q}\right)$ is quasi-alternating. In particular, $w\left(\tau\left(\frac{p}{q}\right)\right)=1$ for $\frac{p}{q} \geq 5$.

Since $w_{\text {max }}=w_{\text {min }}+1=2$ for the tangle associated to the trefoil, $w(L) \leq 2$ for $\boldsymbol{\Sigma}\left(S^{3}, L\right)$ Seifert fibered with base orbifold $S^{2}(2,3, n)$.

A similar argument holds for branch sets associated to fillings of the twisted I-bundle over the Klein bottle to obtain the $S^{2}(2,2, n)$ family.

This proves Theorem 1.

A lower bound for width

The proof of Theorem 2 depends on similar arguments to establish $w_{\text {min }}$ as a lower bound for $w\left(\tau\left(\frac{p}{q}\right)\right)$.

Proposition

Let K be a strongly invertible knot with generic preferred associated quotient tangle T. Then $w\left(\tau\left(\frac{p}{q}\right)\right) \geq w_{\text {min }}$.
In particular:

$$
w_{K}=w_{\min }
$$

Genericity

A tangle T is generic if either

- $w_{\text {max }}=w_{\text {min }}$, or
- if $b_{k}>1$ where

$$
\widetilde{\mathrm{Kh}}(\tau(\ell)) \cong \mathbb{F}^{b_{1}} \oplus \cdots \oplus \mathbb{F}^{b_{k}}
$$

and

$$
\widetilde{\mathrm{Kh}}(\tau(\ell+1)) \cong \mathbb{F}^{b_{1}} \oplus \cdots \oplus \mathbb{F}^{b_{k}} \oplus \mathbb{F}
$$

or

- if $b_{1}>1$ where

$$
\widetilde{\mathrm{Kh}}(\tau(\ell)) \cong \mathbb{F} \oplus \mathbb{F}^{b_{1}} \oplus \cdots \oplus \mathbb{F}^{b_{k}}
$$

and

$$
\widetilde{\mathrm{Kh}}(\tau(\ell+1)) \cong \mathbb{F}^{b_{1}} \oplus \cdots \oplus \mathbb{F}^{b_{k}}
$$

Genericity

For example, for the figure eight we had that

$$
\widetilde{\mathrm{Kh}}(\tau(0)) \cong \mathbb{F} \oplus \mathbb{F}^{5} \oplus \mathbb{F}^{4}
$$

and

$$
\widetilde{\mathrm{Kh}}(\tau(+1)) \cong \mathbb{F}^{5} \oplus \mathbb{F}^{4}
$$

so that the width decays but $b_{1}=5$ so the tangle is generic.
Since the figure eight is amphicheiral, we recover:
Theorem (Thurston)
The figure eight does not admit finite fillings.

A lower bound for width

Suppose that $w_{\min }=w_{\max }=w$. Then as before

$$
\widetilde{\mathrm{Kh}}_{\sigma}\left(\tau\left(\frac{p}{q}\right)\right) \cong H_{*}\left(\widetilde{\mathrm{Kh}}_{\sigma}\left(\tau\left(\frac{p_{0}}{q_{0}}\right)\right) \rightarrow \widetilde{\mathrm{Kh}}_{\sigma}\left(\tau\left(\frac{p_{1}}{q_{1}}\right)\right)\right) .
$$

Recall that the connecting homomorphism raises δ-grading by one:

$$
\widetilde{\mathrm{Kh}}\left(\tau\left(\frac{p}{q}\right)\right) \cong H_{*}\left(\begin{array}{cccc}
\mathbb{F}^{b_{1}} & \mathbb{F}^{b_{2}} & \cdots & \mathbb{F}^{b_{w}} \\
\mathbb{F}_{1}^{b_{1}^{\prime}} & \mathbb{F}^{b_{2}^{\prime}} & \cdots & \mathbb{F}_{w}^{b_{w}^{\prime}}
\end{array}\right)
$$

By induction in the length of the continued fraction for $\frac{p}{q}$, $w\left(\tau\left(\frac{p}{q}\right)\right)=w$.

Determining widths

Notice that $w(\tau(-)): \mathbb{Q} \rightarrow \mathbb{N}$ is constant when $w_{\min }=w_{\max }$.
After a slightly modified argument when $w_{\max }=w_{\text {min }}+1$, we have $w(\tau(-)): \mathbb{Q} \rightarrow \mathbb{N}$ takes values $\left\{w_{\text {min }}, w_{\max }\right\}$ in the generic setting.

This proves Theorem 2: for generic tangles, the minimum width is determined on the integer fillings. That is,

$$
w_{K}=w_{\min }
$$

Example: the knot 14_{11893}^{n}

Theorem (Ozsváth-Szabó)

If $K \hookrightarrow S^{3}$ admits an L-space surgery then

$$
\Delta_{K}(t)=(-1)^{k}+\sum_{j=1}^{k}(-1)^{k-j}\left(t^{-n_{j}}+t^{n_{j}}\right)
$$

for $0<n_{1}<n_{2}<\cdots<n_{k}$.
For example, $\Delta_{4_{1}}(t)=-t^{-1}+3-t$.
On the other hand,

$$
\Delta_{14_{11893}^{n}}(t)=t^{-3}-t^{-2}+t^{-1}-1+t-t^{2}+t^{3} .
$$

Example: the knot 14_{11893}^{n}

			1
			2
			2
		2	3
		4	3
		5	2
	2	7	2
	4	7	1
	5	6	
1	6	5	
2	7	3	
3	5		
3	4		
4	3		
3			
2			
2			

For any n

$$
w(\tau(n)) \geq 4
$$

so that

$$
w_{k}=4
$$

Theorem
14_{11893}^{n} does not admit finite fillings.

